Operators with smooth functional calculi

被引:0
|
作者
Mats Andersson
H⇘kan Samuelsson
Sebastian Sandberg
机构
[1] Chalmers University of Technology and the University of Göteborg,Department of Mathematics
来源
关键词
Tensor Product; Compact Support; Spectral Decomposition; Functional Calculus; Continuous Extension;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a class of (tuples of commuting) unbounded operators on a Banach space, admitting smooth functional calculi, which contains all operators of Helffer-Sjöstrand type and is closed under the action of smooth proper mappings. Moreover, the class is closed under tensor product of commuting operators. In general, and operator in this class has no resolvent in the usual sense, so the spectrum must be defined in terms of the functional calculus. We also consider invariant subspaces and spectral decompositions.
引用
收藏
页码:221 / 247
页数:26
相关论文
共 50 条
  • [31] SMOOTH OPERATORS
    DEJESUS, EX
    [J]. BYTE, 1995, 20 (11): : 77 - 77
  • [32] Smooth operators
    不详
    [J]. PSYCHOLOGIST, 2002, 15 (04) : 200 - 201
  • [33] Smooth operators
    Franzinger, Kathy
    [J]. Motion System Design, 2004, 46 (10):
  • [34] Smooth operators
    [J]. Metalwork Prod, 9 (2pp):
  • [35] Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in LP
    Dorothee Frey
    Alan McIntosh
    Pierre Portal
    [J]. Journal d'Analyse Mathématique, 2018, 134 : 399 - 453
  • [36] Pointwise functional calculi
    deLaubenfels, R
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 142 (01) : 32 - 78
  • [37] Functional calculi of second-order elliptic partial differential operators with bounded measurable coefficients
    Duong, XT
    McIntosh, A
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 1996, 6 (02) : 181 - 205
  • [38] MAXIMAL FUNCTIONAL CALCULI
    DOLLINGE.MB
    OBERAI, KK
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 781 - &
  • [39] Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in L P
    Frey, Dorothee
    McIntosh, Alan
    Portal, Pierre
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2018, 134 (02): : 399 - 453
  • [40] Method for noninvasive diagnosis of functional state disorders in operators with the smooth pursuit test
    Zakharchenko D.V.
    Dorokhov V.B.
    Torshin V.I.
    Sveshnikov D.S.
    Myasnikov I.L.
    Dementienko V.V.
    [J]. Human Physiology, 2017, 43 (2) : 184 - 190