Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in L P

被引:5
|
作者
Frey, Dorothee [1 ,2 ]
McIntosh, Alan
Portal, Pierre [1 ]
机构
[1] Australian Natl Univ, Inst Math Sci, John Dedman Bldg, Canberra, ACT 2601, Australia
[2] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2600 GA Delft, Netherlands
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2018年 / 134卷 / 02期
基金
澳大利亚研究理事会;
关键词
2ND-ORDER ELLIPTIC-OPERATORS; ROOT PROBLEM; BANACH-SPACES; HARDY;
D O I
10.1007/s11854-018-0013-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Perturbed Hodge-Dirac operators and their holomorphic functional calculi, as investigated in the papers by Axelsson, Keith and the second author, provided insight into the solution of the Kato square-root problem for elliptic operators in L (2) spaces and allowed for an extension of these estimates to other systems with applications to non-smooth boundary value problems. In this paper, we determine conditions under which such operators satisfy conical square function estimates in a range of L (p) spaces, thus allowing us to apply the theory of Hardy spaces associated with an operator to prove that they have a bounded holomorphic functional calculus in those L (p) spaces. We also obtain functional calculus results for restrictions to certain subspaces, for a larger range of p. This provides a framework for obtaining L (p) results on perturbed Hodge Laplacians, generalising known Riesz transform bounds for an elliptic operator L with bounded measurable coefficients, one Sobolev exponent below the Hodge exponent, and L (p) bounds on the square-root of L by the gradient, two Sobolev exponents below the Hodge exponent. Our proof shows that the heart of the harmonic analysis in L (2) extends to L (p) for all p a (1,a), while the restrictions in p come from the operator-theoretic part of the L (2) proof. In the course of our work, we obtain some results of independent interest about singular integral operators on tent spaces and about the relationship between conical and vertical square functions.
引用
收藏
页码:399 / 453
页数:55
相关论文
共 12 条
  • [1] Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in LP
    Dorothee Frey
    Alan McIntosh
    Pierre Portal
    [J]. Journal d'Analyse Mathématique, 2018, 134 : 399 - 453
  • [2] Holomorphic functional calculus of Hodge-Dirac operators in L p
    Hytonen, Tuomas
    McIntosh, Alan
    Portal, Pierre
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (01) : 71 - 105
  • [3] Quadratic estimates and functional calculi of perturbed Dirac operators
    Andreas Axelsson
    Stephen Keith
    Alan McIntosh
    [J]. Inventiones mathematicae, 2006, 163 : 455 - 497
  • [4] Quadratic estimates and functional calculi of perturbed Dirac operators
    Axelsson, A
    Keith, S
    McIntosh, A
    [J]. INVENTIONES MATHEMATICAE, 2006, 163 (03) : 455 - 497
  • [5] Holomorphic functional calculus of Hodge-Dirac operators in Lp
    Tuomas Hytönen
    Alan McIntosh
    Pierre Portal
    [J]. Journal of Evolution Equations, 2011, 11 : 71 - 105
  • [6] Conical square function estimates in UMD Banach spaces and applications to H∞-functional calculi
    Tuomas Hytönen
    Jan van Neerven
    Pierre Portal
    [J]. Journal d'Analyse Mathématique, 2008, 106 : 317 - 351
  • [7] CONICAL SQUARE FUNCTION ESTIMATES IN UMD BANACH SPACES AND APPLICATIONS TO H∞-FUNCTIONAL CALCULI
    Hytonen, Tuomas
    van Neerven, Jan
    Portal, Pierre
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2008, 106 (1): : 317 - 351
  • [8] H∞ functional calculus and square function estimates for Ritt operators
    Le Merdy, Christian
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (04) : 1149 - 1190
  • [9] FUNCTIONAL CALCULI AND DECOMPOSABILITY OF UNBOUNDED MULTIPLIER OPERATORS IN L(P)(R(N))
    ALBRECHT, E
    RICKER, WJ
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 : 151 - 166
  • [10] L~p-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on R~n
    Wenyu Tao
    Yanping Chen
    Yayuan Xiao
    Liwei Wang
    [J]. Science China Mathematics, 2020, 63 (03) : 575 - 594