Pointwise functional calculi

被引:0
|
作者
deLaubenfels, R
机构
[1] Scientia Research Institute, Athens
关键词
D O I
10.1006/jfan.1996.0143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose A is a (possibly unbounded) closed linear operator on a Banach space X, x is an element of X, and F is a Banach algebra of functions. We introduce a pointwise F functional calculus for A at x. This is a bounded linear map from F into X, with the properties that one would expect from a map f --> f(A) s, if A had a F functional calculus; however A may not have such a functional calculus. We show that the existence of a pointwise F functional calculus is equivalent to the existence of a continuously embedded Banach subspace on which A has a (global) F functional calculus We characterize being pointwise generalized scalar at x and give simple sufficient conditions. We also discuss the relationship between pointwise functional calculi and the many physical problems that may be modelled as an abstract Cauchy problem. (C) 1996 Academic Press, Inc.
引用
收藏
页码:32 / 78
页数:47
相关论文
共 50 条
  • [1] Functional Calculi
    Trif, Tiberiu
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (03): : 416 - 417
  • [2] MAXIMAL FUNCTIONAL CALCULI
    DOLLINGE.MB
    OBERAI, KK
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 781 - &
  • [3] FUNCTIONAL VERSION OF THE POINTWISE ERGODIC THEOREM
    WEBER, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (02): : 131 - 133
  • [4] Operators with smooth functional calculi
    Andersson, Mats
    Samuelsson, Hakan
    Sandberg, Sebastian
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2006, 98 (1): : 221 - 247
  • [5] Operators with smooth functional calculi
    Mats Andersson
    H⇘kan Samuelsson
    Sebastian Sandberg
    [J]. Journal d’Analyse Mathématique, 2006, 98 : 221 - 247
  • [6] AUTOMATIC EXTENSIONS OF FUNCTIONAL CALCULI
    DELAUBENFELS, R
    [J]. STUDIA MATHEMATICA, 1995, 114 (03) : 237 - 259
  • [7] Functional Differential Equations of Pointwise Type: Bifurcation
    Beklaryan, L. A.
    Beklaryan, A. L.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (08) : 1249 - 1260
  • [8] POINTWISE COMPLETENESS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS
    METELSKII, AV
    [J]. DIFFERENTIAL EQUATIONS, 1991, 27 (06) : 680 - 688
  • [9] Functional Differential Equations of Pointwise Type: Bifurcation
    L. A. Beklaryan
    A. L. Beklaryan
    [J]. Computational Mathematics and Mathematical Physics, 2020, 60 : 1249 - 1260
  • [10] POINTWISE BOUNDS FOR SOLUTIONS OF A CLASS OF FUNCTIONAL EQUATIONS
    CHU, SC
    METCALF, FT
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 1968, 25 (04) : 441 - &