Generalized Lyapunov and invariant set theorems for nonlinear dynamical systems

被引:22
|
作者
Chellaboina, V
Leonessa, A
Haddad, WM [1 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
generalized Lyapunov functions; invariant set theorems; nonlinear dynamical systems; lower semicontinuous Lyapunov functions;
D O I
10.1016/S0167-6911(99)00076-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:289 / 295
页数:7
相关论文
共 50 条
  • [41] Multiple Lyapunov based robust control for the Nonlinear Hybrid Dynamical Systems
    Shah, Ankit K.
    Adhyaru, Dipak M.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO'16), 2016,
  • [42] On the stability and control of nonlinear dynamical systems via vector Lyapunov functions
    Nersesov, SG
    Haddad, WM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (02) : 203 - 215
  • [43] Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems
    Oustry, Antoine
    Tacchi, Matteo
    Henrion, Didier
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 733 - 738
  • [44] GENERALIZED OF LYAPUNOV SYSTEMS
    BOBYLEV, NA
    KRASNOSELSKII, MA
    DOKLADY AKADEMII NAUK SSSR, 1978, 239 (05): : 1021 - 1024
  • [45] Invariant set theorems for non-autonomous time-fractional systems
    Lahrouz, Aadil
    Hajjami, Riane
    El Jarroudi, Mustapha
    Settati, Adel
    Erriani, Mustapha
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (07) : 2280 - 2294
  • [46] Invariant measures of smooth dynamical systems, generalized functions and summation methods
    Kozlov, V. V.
    IZVESTIYA MATHEMATICS, 2016, 80 (02) : 342 - 358
  • [47] SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS WITH APPLICATIONS TO PROJECTED DYNAMICAL SYSTEMS
    Isac, G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (01) : 3 - 13
  • [48] Data-driven invariant set for nonlinear systems with application to
    Kashani, Ali
    Danielson, Claus
    AUTOMATICA, 2025, 172
  • [49] A Set Simulation Approach to the Computation of Invariant Sets for Nonlinear Systems
    Cuguero Escofet, Pep
    Saludes Closa, Jordi
    Escobet Canal, Teresa
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 1944 - 1949
  • [50] Converse theorems of the principal Lyapunov results for partial stability of general dynamical systems on metric spaces
    Molchanov, AP
    Michel, AN
    Sun, Y
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 5085 - 5090