Generalized Lyapunov and invariant set theorems for nonlinear dynamical systems

被引:22
|
作者
Chellaboina, V
Leonessa, A
Haddad, WM [1 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
generalized Lyapunov functions; invariant set theorems; nonlinear dynamical systems; lower semicontinuous Lyapunov functions;
D O I
10.1016/S0167-6911(99)00076-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:289 / 295
页数:7
相关论文
共 50 条
  • [31] Singularly impulsive or generalized impulsive dynamical systems: Lyapunov and asymptotic stability
    Kablar, NA
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 173 - 175
  • [32] A Lyapunov-Type Function for Generalized Dynamical Systems Without Uniqueness
    A. F. Filippov
    Differential Equations, 2003, 39 : 901 - 903
  • [33] On Lyapunov theorems for descriptor systems
    Zhang, GF
    Zhang, QL
    Chen, TW
    Lin, YP
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (05): : 709 - 725
  • [34] INVARIANT SET STABILITY IN DISCRETE NONLINEAR-SYSTEMS
    KUNTSEVICH, VM
    POKOTILO, VG
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1994, 58 (05): : 815 - 823
  • [35] Poincare's recurrence theorems for set-valued dynamical systems
    Tarafdar, E
    Watson, P
    Yuan, XZ
    APPLIED MATHEMATICS LETTERS, 1997, 10 (06) : 37 - 44
  • [36] Generalized quadratic lyapunov functions for nonlinear/uncertain systems analysis
    Iwasaki, T
    PERSPECTIVES IN ROBUST CONTROL, 2001, 268 : 149 - 174
  • [37] Generalized quadratic Lyapunov functions for nonlinear/uncertain systems analysis
    Iwasaki, T
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 2953 - 2958
  • [38] Parallel algorithms for the determination of Lyapunov characteristics of large nonlinear dynamical systems
    Radons, Guenter
    Ruenger, Gudula
    Schwind, Michael
    Yang, Hong-liu
    APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2006, 3732 : 1131 - 1140
  • [39] Stability and inertia theorems for generalized Lyapunov equations
    Stykel, T
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 355 (1-3) : 297 - 314
  • [40] ON SELECTING AND RECONSTRUCTING LYAPUNOV FUNCTIONS FOR STABILITY ANALYSIS OF NONLINEAR DYNAMICAL SYSTEMS
    Wei, Bin
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 10, 2023,