Generalized Lyapunov and invariant set theorems for nonlinear dynamical systems

被引:22
|
作者
Chellaboina, V
Leonessa, A
Haddad, WM [1 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
generalized Lyapunov functions; invariant set theorems; nonlinear dynamical systems; lower semicontinuous Lyapunov functions;
D O I
10.1016/S0167-6911(99)00076-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:289 / 295
页数:7
相关论文
共 50 条
  • [21] Generalized Gain Margin Assessment of Nonlinear Time-Invariant Systems via Lyapunov's Second Method
    Yang, Xiaojing
    Zhu, J. Jim
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 3017 - 3022
  • [22] The direct method of Lyapunov for nonlinear dynamical systems with fractional damping
    Matthias Hinze
    André Schmidt
    Remco I. Leine
    Nonlinear Dynamics, 2020, 102 : 2017 - 2037
  • [23] Convergence analysis of nonlinear dynamical systems by nested Lyapunov functions
    Peterfreund, N
    Baram, Y
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (08) : 1179 - 1184
  • [24] The direct method of Lyapunov for nonlinear dynamical systems with fractional damping
    Hinze, Matthias
    Schmidt, Andre
    Leine, Remco I.
    NONLINEAR DYNAMICS, 2020, 102 (04) : 2017 - 2037
  • [25] Discovering Forward Invariant Sets for Nonlinear Dynamical Systems
    Kapinski, James
    Deshmukh, Jyotirmoy
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 259 - 264
  • [26] An impact of noise on invariant manifolds in nonlinear dynamical systems
    Sun, Xu
    Duan, Jinqiao
    Li, Xiaofan
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [27] The Invariant Set Theory of Multiple Valued Iterative Dynamical Systems
    Kahng, Byungik
    PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND SIMULATION IN ENGINEERING (ICOSSSE '08): RECENT ADVANCES IN SYSTEMS SCIENCE AND SIMULATION IN ENGINEERING, 2008, : 19 - +
  • [28] Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space Introduction
    Lian, Zeng
    Lu, Kening
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 206 (967) : 1 - +
  • [29] Converse Lyapunov theorems for infinite-dimensional nonlinear switching systems
    Haidar, Ihab
    Chitour, Yacine
    Mason, Paolo
    Sigalotti, Mario
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 587 - 592
  • [30] A Lyapunov-type function for generalized dynamical systems without uniqueness
    Filippov, AF
    DIFFERENTIAL EQUATIONS, 2003, 39 (06) : 901 - 903