A NOTE ON LOCAL MINIMIZERS OF ENERGY ON COMPLETE MANIFOLDS

被引:0
|
作者
Batista, Marcio [1 ]
Santos, Jose I. [2 ]
机构
[1] Univ Fed Alagoas, CPMAT IM, BR-57072900 Maceio, AL, Brazil
[2] Inst Fed Alagoas, BR-57608180 Palmeiras Dos Indios, AL, Brazil
关键词
Stability; minimizer; manifolds; DE-GIORGI; CONJECTURE; SURFACES; GEOMETRY;
D O I
10.12775/TMNA.2022.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the geometric rigidity of complete Rie-mannian manifolds admitting local minimizers of energy functionals. More precisely, assuming the existence of a non-trivial local minimizer and under suitable assumptions, a Riemannian manifold under consideration must be a product manifold furnished with a warped metric. Secondly, under simi-lar hypotheses, we deduce a geometrical splitting in the same fashion as in the Cheeger-Gromoll splitting theorem and we also get information about local minimizers.
引用
收藏
页码:565 / 579
页数:15
相关论文
共 50 条
  • [31] LOCAL MINIMIZERS AND REARRANGEMENTS
    CIANCHI, A
    APPLIED MATHEMATICS AND OPTIMIZATION, 1993, 27 (03): : 261 - 274
  • [32] Convergence of Local Minimizers
    Braides, Andrea
    LOCAL MINIMIZATION, VARIATIONAL EVOLUTION AND GAMMA-CONVERGENCE, 2014, 2094 : 67 - 78
  • [33] NOTE ON DUALITY OVER COMPLETE LOCAL RINGS
    WOODCOCK, CF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 6 (24): : 614 - 616
  • [34] A NOTE ON QUASI-COMPLETE LOCAL RINGS
    JOHNSON, EW
    COLLOQUIUM MATHEMATICUM, 1970, 21 (02) : 197 - &
  • [35] A note on the structure of complete alternative local algebras
    Manoharmayum, Jayanta
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5511 - 5516
  • [36] A note on (local) energy of a graph
    Rakshith, B. R.
    Das, Kinkar Chandra
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (07):
  • [37] Relative minimizers of energy are relative minimizers of area
    Stefan Hildebrandt
    Friedrich Sauvigny
    Calculus of Variations and Partial Differential Equations, 2010, 37 : 475 - 483
  • [38] A note on the Hausdorff dimension of the singular set for minimizers of the Mumford-Shah energy
    De Lellis, Camillo
    Focardi, Matteo
    Ruffini, Berardo
    ADVANCES IN CALCULUS OF VARIATIONS, 2014, 7 (04) : 539 - 545
  • [39] Convergence of Minimizers with Local Energy Bounds for the Ginzburg-Landau Functionals
    Baldo, S.
    Orlandi, G.
    Weitkamp, S.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (05) : 2369 - 2407
  • [40] On the Minimizers of Curvature Functionals in Asymptotically Flat Manifolds
    Guodong Wei
    The Journal of Geometric Analysis, 2021, 31 : 5837 - 5853