Convergence of Minimizers with Local Energy Bounds for the Ginzburg-Landau Functionals

被引:4
|
作者
Baldo, S. [1 ]
Orlandi, G. [2 ]
Weitkamp, S. [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy
[2] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
关键词
Gamma-convergence; Ginzburg-Landau; vortices; minimal surfaces; 3; DIMENSIONS; EQUATION; FIELD;
D O I
10.1512/iumj.2009.58.3571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behaviour, as epsilon -> 0, of a sequence {u(epsilon)} of minimizers for the Ginzburg-Landau functional which satisfies local energy bounds of order vertical bar log epsilon vertical bar. The jacobians Ju(epsilon) are shown to converge, in a suitable sense and up to subsequences, to an area minimizing minimal surface of codimension 2. This is achieved without assumptions on the global energy of the sequence or on the boundary data, and holds even for unbounded domains. The proof is based on an improved version of the F-convergence results from [3].
引用
收藏
页码:2369 / 2407
页数:39
相关论文
共 50 条