Γ-CONVERGENCE OF GRAPH GINZBURG-LANDAU FUNCTIONALS

被引:0
|
作者
van Gennip, Yves [1 ]
Bertozzi, Andrea L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
PHASE-TRANSITIONS; CONTINUUM LIMITS; GRADIENT THEORY; CONSISTENCY; DERIVATION; EQUATIONS; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Gamma-convergence of graph-based Ginzburg-Landau functionals, both the limit for zero diffusive interface parameter epsilon -> 0 and the limit for infinite nodes in the graph m -> infinity. For general graphs we prove that in the limit epsilon -> 0 the graph cut objective function is recovered. We show that the continuum limit of this objective function on 4-regular graphs is related to the total variation seminorm and compare it with the limit of the discretized Ginzburg-Landau functional. For both functionals we also study the simultaneous limit epsilon -> 0 and m -> infinity, by expressing epsilon as a power of m and taking m -> infinity. Finally we investigate the continuum limit for a nonlocal means-type functional on a completely connected graph.
引用
收藏
页码:1115 / 1180
页数:66
相关论文
共 50 条
  • [1] Variational convergence for functionals of Ginzburg-Landau type
    Alberti, G
    Baldo, S
    Orlandi, G
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (05) : 1411 - 1472
  • [2] DEGENERATE GINZBURG-LANDAU FUNCTIONALS
    Franchi, Bruno
    Serra, Elena
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2006, 7 (03) : 443 - 452
  • [3] Convergence of Minimizers with Local Energy Bounds for the Ginzburg-Landau Functionals
    Baldo, S.
    Orlandi, G.
    Weitkamp, S.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (05) : 2369 - 2407
  • [4] Convergence of Ginzburg-Landau Functionals in Three-Dimensional Superconductivity
    Baldo, S.
    Jerrard, R. L.
    Orlandi, G.
    Soner, H. M.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) : 699 - 752
  • [5] A variational convergence result for functionals of Ginzburg-Landau type in any dimension
    Alberti, G
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4B (02): : 289 - 310
  • [6] Remarks on Γ-convergence of penalized functionals of Ginzburg-Landau type in one dimension
    Raguz, A
    [J]. MULTISCALE PROBLEMS IN SCIENCE AND TECHNOLOGY: CHALLENGES TO MATHEMATICAL ANALYSIS AND PERSPECTIVES, 2002, : 271 - 282
  • [7] ON THE UNIQUENESS OF MINIMISERS OF GINZBURG-LANDAU FUNCTIONALS
    Ignat, Radu
    Luc Nguyen
    Slastikov, Valeriy
    Zarnescu, Arghir
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (03): : 589 - 613
  • [8] Refined Jacobian estimates for Ginzburg-Landau functionals
    Jerrard, Robert
    Spirn, Daniel
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (01) : 135 - 186
  • [9] Threshold transition energies for Ginzburg-Landau functionals
    Almeida, L
    [J]. NONLINEARITY, 1999, 12 (05) : 1389 - 1414
  • [10] SINGULAR LIMIT FOR THE MINIMIZATION OF GINZBURG-LANDAU FUNCTIONALS
    BETHUEL, F
    BREZIS, H
    HELEIN, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (12): : 891 - 895