A NOTE ON LOCAL MINIMIZERS OF ENERGY ON COMPLETE MANIFOLDS

被引:0
|
作者
Batista, Marcio [1 ]
Santos, Jose I. [2 ]
机构
[1] Univ Fed Alagoas, CPMAT IM, BR-57072900 Maceio, AL, Brazil
[2] Inst Fed Alagoas, BR-57608180 Palmeiras Dos Indios, AL, Brazil
关键词
Stability; minimizer; manifolds; DE-GIORGI; CONJECTURE; SURFACES; GEOMETRY;
D O I
10.12775/TMNA.2022.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the geometric rigidity of complete Rie-mannian manifolds admitting local minimizers of energy functionals. More precisely, assuming the existence of a non-trivial local minimizer and under suitable assumptions, a Riemannian manifold under consideration must be a product manifold furnished with a warped metric. Secondly, under simi-lar hypotheses, we deduce a geometrical splitting in the same fashion as in the Cheeger-Gromoll splitting theorem and we also get information about local minimizers.
引用
收藏
页码:565 / 579
页数:15
相关论文
共 50 条
  • [21] Multiple bifurcations and local energy minimizers in thermoelastic martensitic transformations
    Chen Xuan
    Shurong Ding
    Yongzhong Huo
    Acta Mechanica Sinica, 2015, 31 (05) : 660 - 671
  • [22] Local and global minimizers for a variational energy involving a fractional norm
    Palatucci, Giampiero
    Savin, Ovidiu
    Valdinoci, Enrico
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (04) : 673 - 718
  • [23] The gradient flow of the Möbius energy near local minimizers
    Simon Blatt
    Calculus of Variations and Partial Differential Equations, 2012, 43 : 403 - 439
  • [24] Topologically driven local minimizers of the Oseen-Frank energy
    Kim, Y
    Rubinstein, J
    Sternberg, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (09)
  • [25] Local and global minimizers for a variational energy involving a fractional norm
    Giampiero Palatucci
    Ovidiu Savin
    Enrico Valdinoci
    Annali di Matematica Pura ed Applicata, 2013, 192 : 673 - 718
  • [26] Multiple bifurcations and local energy minimizers in thermoelastic martensitic transformations
    Chen Xuan
    Shurong Ding
    Yongzhong Huo
    Acta Mechanica Sinica, 2015, 31 : 660 - 671
  • [27] Multiple bifurcations and local energy minimizers in thermoelastic martensitic transformations
    Xuan, Chen
    Ding, Shurong
    Huo, Yongzhong
    ACTA MECHANICA SINICA, 2015, 31 (05) : 660 - 671
  • [29] Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems
    J. A. Carrillo
    M. G. Delgadino
    A. Mellet
    Communications in Mathematical Physics, 2016, 343 : 747 - 781
  • [30] Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems
    Carrillo, J. A.
    Delgadino, M. G.
    Mellet, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (03) : 747 - 781