Triple Imputation for Microarray Missing Value Estimation

被引:0
|
作者
He, Chong [1 ]
Li, Hui-Hui [1 ]
Zhao, Changbo [1 ]
Li, Guo-Zheng [1 ]
Zhang, Wei [1 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
关键词
microarray gene expression data; missing value imputation; semi-supervised learning; GENE-EXPRESSION DATA; FRAMEWORK;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data obtained from gene expression microarray experiments always suffer from missing values due to various reasons. However, complete gene expression data are of great importance to many gene expression data analysis issues. Therefore, imputation methods with high estimation precision are critical to further data analysis. In this paper, inspired by the idea of semi-supervised learning with tri-training, we propose a novel imputation method called TRIIM (TRIple IMputation). TRIIM estimates missing values using triple imputation strategies based on Bayesian principal component analysis (BPCA), local least squares (LLS) and expectation maximization (EM). The data properties of global correlation information, local structure and data distribution are all considered properly. It is implemented by sharing the estimated values of any two algorithms' cooperation to the rest at each step, and assembling combinations of all imputation results finally. Experimental results on four real microarray matrices demonstrate that TRIIM achieves better performance than the comparative algorithms in terms of normalized root mean square error (NRMSE), even in the case of microarray dataset with large missing rates and few complete genes.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 50 条
  • [21] Cluster-based KNN Missing Value Imputation for DNA Microarray Data
    Keerin, Phimmarin
    Kurutach, Werasak
    Boongoen, Tossapon
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 445 - 450
  • [22] Sequential local least squares imputation estimating missing value of microarray data
    Zhang, Xiaobai
    Song, Xiaofeng
    Wang, Huinan
    Zhan, Huanping
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (10) : 1112 - 1120
  • [23] An efficient ensemble method for missing value imputation in microarray gene expression data
    Xinshan Zhu
    Jiayu Wang
    Biao Sun
    Chao Ren
    Ting Yang
    Jie Ding
    [J]. BMC Bioinformatics, 22
  • [24] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Tuikkala, Johannes
    Elo, Laura L.
    Nevalainen, Olli S.
    Aittokallio, Tero
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [25] Missing value imputation for microarray data: a comprehensive comparison study and a web tool
    Chiu, Chia-Chun
    Chan, Shih-Yao
    Wang, Chung-Ching
    Wu, Wei-Sheng
    [J]. BMC SYSTEMS BIOLOGY, 2013, 7
  • [26] An efficient ensemble method for missing value imputation in microarray gene expression data
    Zhu, Xinshan
    Wang, Jiayu
    Sun, Biao
    Ren, Chao
    Yang, Ting
    Ding, Jie
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [27] Missing value imputation framework for microarray significant gene selection and class prediction
    Sehgal, Muhammad Shoaib B.
    Gondal, Iqbal
    Dooley, Laurence
    [J]. DATA MINING FOR BIOMEDICAL APPLICATIONS, PROCEEDINGS, 2006, 3916 : 131 - 142
  • [28] Missing value imputation improves clustering and interpretation of gene expression microarray data
    Johannes Tuikkala
    Laura L Elo
    Olli S Nevalainen
    Tero Aittokallio
    [J]. BMC Bioinformatics, 9
  • [29] Improving missing value imputation of microarray data by using spot quality weights
    Peter Johansson
    Jari Häkkinen
    [J]. BMC Bioinformatics, 7
  • [30] Improving missing value imputation of microarray data by using spot quality weights
    Johansson, Peter
    Hakkinen, Jari
    [J]. BMC BIOINFORMATICS, 2006, 7 (1)