Triple Imputation for Microarray Missing Value Estimation

被引:0
|
作者
He, Chong [1 ]
Li, Hui-Hui [1 ]
Zhao, Changbo [1 ]
Li, Guo-Zheng [1 ]
Zhang, Wei [1 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
关键词
microarray gene expression data; missing value imputation; semi-supervised learning; GENE-EXPRESSION DATA; FRAMEWORK;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data obtained from gene expression microarray experiments always suffer from missing values due to various reasons. However, complete gene expression data are of great importance to many gene expression data analysis issues. Therefore, imputation methods with high estimation precision are critical to further data analysis. In this paper, inspired by the idea of semi-supervised learning with tri-training, we propose a novel imputation method called TRIIM (TRIple IMputation). TRIIM estimates missing values using triple imputation strategies based on Bayesian principal component analysis (BPCA), local least squares (LLS) and expectation maximization (EM). The data properties of global correlation information, local structure and data distribution are all considered properly. It is implemented by sharing the estimated values of any two algorithms' cooperation to the rest at each step, and assembling combinations of all imputation results finally. Experimental results on four real microarray matrices demonstrate that TRIIM achieves better performance than the comparative algorithms in terms of normalized root mean square error (NRMSE), even in the case of microarray dataset with large missing rates and few complete genes.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 50 条
  • [31] Improving missing value imputation of microarray data by using spot quality weights
    Johansson, Peter
    Hakkinen, Jari
    [J]. BMC BIOINFORMATICS, 2006, 7 (1)
  • [32] A Hybrid Iterative Approach for Microarray Missing Value Estimation
    He, Chong
    Zhao, Changbo
    Li, Guo-Zheng
    Zhu, Wei
    Yang, William
    Yang, Mary Qu
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1350 - 1352
  • [33] Regularized Sparse Modelling for Microarray Missing Value Estimation
    Wang, Aiguo
    Yang, Jing
    An, Ning
    [J]. IEEE ACCESS, 2021, 9 : 16899 - 16913
  • [34] An algorithm for missing value estimation for DNA microarray data
    Friedland, Shmuel
    Niknejad, Amir
    Kaveh, Mostafa
    Zare, Hossein
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 2340 - 2343
  • [35] Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme
    Xian Wang
    Ao Li
    Zhaohui Jiang
    Huanqing Feng
    [J]. BMC Bioinformatics, 7
  • [36] Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme
    Wang, X
    Li, A
    Jiang, ZH
    Feng, HQ
    [J]. BMC BIOINFORMATICS, 2006, 7 (1)
  • [37] MICROARRAY MISSING DATA IMPUTATION USING REGRESSION
    Bayrak, Tuncay
    Ogul, Hasan
    [J]. 2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 68 - 73
  • [38] Comparative analysis of missing value imputation methods to improve clustering and interpretation of microarray experiments
    Magalie Celton
    Alain Malpertuy
    Gaëlle Lelandais
    Alexandre G de Brevern
    [J]. BMC Genomics, 11
  • [39] The influence of missing value imputation on detection of differentially expressed genes from microarray data
    Scheel, I
    Aldrin, M
    Glad, IK
    Sorum, R
    Lyng, H
    Frigessi, A
    [J]. BIOINFORMATICS, 2005, 21 (23) : 4272 - 4279
  • [40] Missing value imputation for microarray gene expression data using histone acetylation information
    Xiang, Qian
    Dai, Xianhua
    Deng, Yangyang
    He, Caisheng
    Wang, Jiang
    Feng, Jihua
    Dai, Zhiming
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)