The first-order div least squares finite element methods provide inherent a posteriori error estimator by the elementwise evaluation of the functional. In this paper we prove Q-linear convergence of the associated adaptive mesh-refining strategy for a sufficiently fine initial mesh with some sufficiently large bulk parameter for piecewise constant right-hand sides in a Poisson model problem. The proof relies on some modification of known supercloseness results to non-convex polygonal domains plus the flux representation formula. The analysis is carried out for the lowest-order case in two-dimensions for the simplicity of the presentation.
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Chen, Long
Holst, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Holst, Michael
Xu, Jinchao
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, University Pk, PA 16801 USA
Peking Univ, Sch Math Sci, Beijing, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA