Review and computational comparison of adaptive least-squares finite element schemes

被引:1
|
作者
Bringmann, Philipp [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Least-squares finite element method; Adaptive mesh refinement; Alternative a posteriori error estimation; Separate marking; Data approximation; Numerical experiments; QUASI-OPTIMAL CONVERGENCE; MESH REFINEMENT; ERROR ESTIMATORS; LOCAL REFINEMENT; SEPARATE MARKING; OPTIMALITY; ALGORITHM; AXIOMS; FEM;
D O I
10.1016/j.camwa.2024.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convergence analysis for least-squares finite element methods led to various adaptive mesh-refinement strategies: Collective marking algorithms driven by the built-in a posteriori error estimator or an alternative explicit residual-based error estimator as well as a separate marking strategy based on the alternative error estimator and an optimal data approximation algorithm. This paper reviews and discusses available convergence results. In addition, all three strategies are investigated empirically for a set of benchmarks examples of second order elliptic partial differential equations in two spatial dimensions. Particular interest is on the choice of the marking and refinement parameters and the approximation of the given data. The numerical experiments are reproducible using the author's software package octAFEM available on the platform Code Ocean.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Least-squares finite element schemes in the time domain
    Singh, KM
    Kalra, MS
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (1-2) : 111 - 131
  • [2] Adaptive least-squares finite element approximations to Stokes equations
    Lee, Hsueh-Chen
    Chen, Tsu-Fen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 396 - 412
  • [3] A posteriori error estimation in least-squares stabilized finite element schemes
    Rannacher, R
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) : 99 - 114
  • [4] Least-squares finite element method for computational fluid and solid mechanics
    Jiang, BN
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 65 - 70
  • [5] An adaptive least-squares mixed finite element method for the Signorini problem
    Krause, Rolf
    Mueller, Benjamin
    Starke, Gerhard
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 276 - 289
  • [6] Least-squares finite element method on adaptive grid for PDEs with shocks
    Xue, JX
    Liao, GJ
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (01) : 114 - 127
  • [7] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [8] Implicit time discretization schemes for mixed least-squares finite element formulations
    Averweg, Solveigh
    Schwarz, Alexander
    Nisters, Carina
    Schroeder, Joerg
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368
  • [9] Adaptive weights for mass conservation in a least-squares finite element method
    Lee, Hsueh-Chen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 20 - 35
  • [10] EFFICIENT COMPUTATIONAL SCHEMES FOR THE ORTHOGONAL LEAST-SQUARES ALGORITHM
    CHNG, ES
    CHEN, S
    MULGREW, B
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (01) : 373 - 376