Bingo: A Customizable Framework for Symbolic Regression with Genetic Programming

被引:4
|
作者
Randall, David L. [1 ]
Townsend, Tyler S. [2 ]
Hochhalter, Jacob D. [1 ]
Bomarito, Geoffrey F. [3 ]
机构
[1] Univ Utah, Salt Lake City, UT 84112 USA
[2] Microsoft, Redmond, WA USA
[3] NASA Langley Res Ctr, Hampton, VA USA
关键词
genetic programming; symbolic regression; genetic programming for symbolic regression;
D O I
10.1145/3520304.3534031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce Bingo, a flexible and customizable yet performant Python framework for symbolic regression with genetic programming. Bingo maintains a modular code structure for simple abstraction and easily swappable components. Fitness functions, selection methods, and constant optimization methods allow for easy problem-specific customization. Bingo also maintains several features for increased efficiency such as parallelism, equation simplification, and a C++ backend. We compare Bingo's performance to other genetic programming for symbolic regression (GPSR) methods to show that it is both competitive and flexible.
引用
收藏
页码:2282 / 2288
页数:7
相关论文
共 50 条
  • [31] Semantic schema based genetic programming for symbolic regression
    Zojaji, Zahra
    Ebadzadeh, Mohammad Mehdi
    Nasiri, Hamid
    [J]. APPLIED SOFT COMPUTING, 2022, 122
  • [32] Further Investigation on Genetic Programming with Transfer Learning for Symbolic Regression
    Haslam, Edward
    Xue, Bing
    Zhang, Mengjie
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3598 - 3605
  • [33] Symbolic regression on noisy data with genetic and gene expression programming
    Bautu, E
    Bautu, A
    Luchian, H
    [J]. Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, 2005, : 321 - 324
  • [34] Combining Conformal Prediction and Genetic Programming for Symbolic Interval Regression
    Pham Thi Thuong
    Nguyen Xuan Hoai
    Yao, Xin
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1001 - 1008
  • [35] Genetic Programming for Symbolic Regression: A Study on Fish Weight Prediction
    Yang, Yunhan
    Xue, Bing
    Jesson, Linley
    Zhang, Mengjie
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 588 - 595
  • [36] Rademacher Complexity for Enhancing the Generalization of Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2382 - 2395
  • [37] Symbolic regression problems by genetic programming with multi-branches
    Morales, CO
    Vázquez, KR
    [J]. MICAI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2004, 2972 : 717 - 726
  • [38] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342
  • [39] Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression
    Chang, Chi-Hsien
    Chiang, Tu-Chin
    Hsu, Tzu-Hao
    Chuang, Ting-Shuo
    Fang, Wen-Zhong
    Yu, Tian-Li
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 543 - 546
  • [40] Instance based Transfer Learning for Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 3006 - 3013