Domination of generalized Cartesian products

被引:2
|
作者
Benecke, S. [1 ]
Mynhardt, C. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Cartesian product; Generalized prism; Generalized Cartesian product; Universal doubler; Universal multiplier; Domination number; GRAPHS;
D O I
10.1016/j.disc.2009.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized prism pi G of G is the graph consisting of two copies of G, with edges between the copies determined by a permutation pi acting on the vertices of G. We define a generalized Cartesian product G (sic) H that corresponds to the Cartesian product G square H when pi is the identity, and the generalized prism when H is the graph K(2). Burger, Mynhardt and Weakley [A.P. Burger, C.M. Mynhardt, W.D.Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2) (2004) 303-318.] characterized universal doublers, i.e. graphs for which gamma(pi G) = 2 gamma(G) for any pi. In general gamma(G (sic) K(n)) <= n gamma(G) for any n >= 2 and permutation pi, and a graph attaining equality in this upper bound for all pi is called a universal multiplier. We characterize such graphs. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:1392 / 1397
页数:6
相关论文
共 50 条
  • [41] Maker–Breaker domination number for Cartesian products of path graphs P2 and Pn
    Forcan J.
    Qi J.
    Discrete Mathematics and Theoretical Computer Science, 2024, 25 (02):
  • [42] Optimal L(2,1)-labeling of Cartesian products of cycles, with an application to independent domination
    Jha, PK
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (10): : 1531 - 1534
  • [43] Generalized domination and efficient domination in graphs
    Bange, DW
    Barkauskas, AE
    Host, LH
    Slater, PJ
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 1 - 11
  • [44] Generalized domination and efficient domination in graphs
    Department of Mathematics, University of Wisconsin-LaCrosse, LaCrosse, WI 54601, United States
    不详
    Discrete Math, 1-3 (1-11):
  • [45] On the power domination number of the Cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (03) : 253 - 257
  • [46] Convex domination in the composition and cartesian product of graphs
    Labendia, Mhelmar A.
    Canoy, Sergio R., Jr.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (04) : 1003 - 1009
  • [47] Domination in products
    Guerrero Sanchez, David
    TOPOLOGY AND ITS APPLICATIONS, 2015, 192 : 145 - 157
  • [48] On domination number of Cartesian product of directed paths
    Liu, Juan
    Zhang, Xindong
    Meng, Jixiang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (04) : 651 - 662
  • [49] Certain domination numbers for Cartesian product of graphs
    Arulanand, S.
    Rajan, R. Sundara
    Prabhu, S.
    Stephen, Sudeep
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03): : 1045 - 1058
  • [50] On domination number of Cartesian product of directed paths
    Juan Liu
    Xindong Zhang
    Jixiang Meng
    Journal of Combinatorial Optimization, 2011, 22 : 651 - 662