Domination of generalized Cartesian products

被引:2
|
作者
Benecke, S. [1 ]
Mynhardt, C. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Cartesian product; Generalized prism; Generalized Cartesian product; Universal doubler; Universal multiplier; Domination number; GRAPHS;
D O I
10.1016/j.disc.2009.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized prism pi G of G is the graph consisting of two copies of G, with edges between the copies determined by a permutation pi acting on the vertices of G. We define a generalized Cartesian product G (sic) H that corresponds to the Cartesian product G square H when pi is the identity, and the generalized prism when H is the graph K(2). Burger, Mynhardt and Weakley [A.P. Burger, C.M. Mynhardt, W.D.Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2) (2004) 303-318.] characterized universal doublers, i.e. graphs for which gamma(pi G) = 2 gamma(G) for any pi. In general gamma(G (sic) K(n)) <= n gamma(G) for any n >= 2 and permutation pi, and a graph attaining equality in this upper bound for all pi is called a universal multiplier. We characterize such graphs. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:1392 / 1397
页数:6
相关论文
共 50 条
  • [21] 2-Rainbow domination number of Cartesian products: and
    Stepien, Zofia
    Zwierzchowski, Maciej
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 748 - 755
  • [22] On the upper total domination number of Cartesian products of graphs
    Paul Dorbec
    Michael A. Henning
    Douglas F. Rall
    Journal of Combinatorial Optimization, 2008, 16 : 68 - 80
  • [23] On the total {k}-domination number of Cartesian products of graphs
    Ning Li
    Xinmin Hou
    Journal of Combinatorial Optimization, 2009, 18 : 173 - 178
  • [24] Roman domination number of the Cartesian products of paths and cycles
    Pavlic, Polona
    Zerovnik, Janez
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [25] PARTIAL DOMINATION IN THE JOIN, CORONA, LEXICOGRAPHIC AND CARTESIAN PRODUCTS OF GRAPHS
    Macapodi, Roselainie D.
    Isla, Rowena T.
    Canoy, Sergio R., Jr.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (02): : 277 - 293
  • [26] The Cartesian domination of societies
    Arnau Revuelta, Joaquin
    RAZON HISTORICA-REVISTA HISPANOAMERICANA DE HISTORIA DE LAS IDEAS, 2013, (23): : 70 - 77
  • [27] The secure domination number of Cartesian products of small graphs with paths and cycles
    Haythorpe, Michael
    Newcombe, Alex
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 32 - 45
  • [28] Total domination number of Cartesian products (vol 9, pg 35, 2004)
    Kuziak, Dorota
    Peterin, Iztok
    Yero, Ismael G.
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 195 - 200
  • [29] Algorithmic aspect on total Roman {2}-domination of Cartesian products of paths and cycles
    Chen, Qin
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (02) : 2029 - 2044
  • [30] Generalized line graphs: Cartesian products and complexity of recognition
    Lakshmanan, Aparna S.
    Bujtas, Csilla
    Tuza, Zsolt
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):