Domination of generalized Cartesian products

被引:2
|
作者
Benecke, S. [1 ]
Mynhardt, C. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Cartesian product; Generalized prism; Generalized Cartesian product; Universal doubler; Universal multiplier; Domination number; GRAPHS;
D O I
10.1016/j.disc.2009.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized prism pi G of G is the graph consisting of two copies of G, with edges between the copies determined by a permutation pi acting on the vertices of G. We define a generalized Cartesian product G (sic) H that corresponds to the Cartesian product G square H when pi is the identity, and the generalized prism when H is the graph K(2). Burger, Mynhardt and Weakley [A.P. Burger, C.M. Mynhardt, W.D.Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2) (2004) 303-318.] characterized universal doublers, i.e. graphs for which gamma(pi G) = 2 gamma(G) for any pi. In general gamma(G (sic) K(n)) <= n gamma(G) for any n >= 2 and permutation pi, and a graph attaining equality in this upper bound for all pi is called a universal multiplier. We characterize such graphs. (C) 2010 Published by Elsevier B.V.
引用
下载
收藏
页码:1392 / 1397
页数:6
相关论文
共 50 条
  • [31] Vizing-like conjecture for the upper domination of Cartesian products of graphs - the proof
    Bresar, B
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [32] GRUNDY DOMINATION SEQUENCES IN GENERALIZED CORONA PRODUCTS OF GRAPHS
    Majd, Seyedeh Maryam Moosavi
    Maimani, Hamid Reza
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 1231 - 1237
  • [33] On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles
    Dehgardi, Nasrin
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 315 - 324
  • [34] On the geodetic domination and domination numbers of some Cartesian product graphs
    Zhao, Min
    Wang, Qin
    ARS COMBINATORIA, 2019, 142 : 381 - 391
  • [35] Italian domination in the Cartesian product of paths
    Hong Gao
    Tingting Feng
    Yuansheng Yang
    Journal of Combinatorial Optimization, 2021, 41 : 526 - 543
  • [36] ON TOTAL DOMINATION IN THE CARTESIAN PRODUCT OF GRAPHS
    Bresar, Bostjan
    Hartinger, Tatiana Romina
    Kos, Tim
    Milanic, Martin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 963 - 976
  • [37] Power domination of the cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 22 - 30
  • [38] Italian domination in the Cartesian product of paths
    Gao, Hong
    Feng, Tingting
    Yang, Yuansheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 526 - 543
  • [39] Integer domination of Cartesian product graphs
    Choudhary, K.
    Margulies, S.
    Hicks, I. V.
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1239 - 1242
  • [40] On domination numbers of Cartesian product of paths
    Gravier, S
    Mollard, M
    DISCRETE APPLIED MATHEMATICS, 1997, 80 (2-3) : 247 - 250