Domination of generalized Cartesian products

被引:2
|
作者
Benecke, S. [1 ]
Mynhardt, C. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Cartesian product; Generalized prism; Generalized Cartesian product; Universal doubler; Universal multiplier; Domination number; GRAPHS;
D O I
10.1016/j.disc.2009.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized prism pi G of G is the graph consisting of two copies of G, with edges between the copies determined by a permutation pi acting on the vertices of G. We define a generalized Cartesian product G (sic) H that corresponds to the Cartesian product G square H when pi is the identity, and the generalized prism when H is the graph K(2). Burger, Mynhardt and Weakley [A.P. Burger, C.M. Mynhardt, W.D.Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2) (2004) 303-318.] characterized universal doublers, i.e. graphs for which gamma(pi G) = 2 gamma(G) for any pi. In general gamma(G (sic) K(n)) <= n gamma(G) for any n >= 2 and permutation pi, and a graph attaining equality in this upper bound for all pi is called a universal multiplier. We characterize such graphs. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:1392 / 1397
页数:6
相关论文
共 50 条
  • [1] Cartesian products and edge domination
    Cutler, RW
    Halsey, MD
    [J]. ARS COMBINATORIA, 2004, 70 : 129 - 133
  • [2] Paired Domination of Cartesian Products of Graphs
    Xin Min HOU Fan JIANG Department of Mathematics University of Science and Technology of China Anhui P R China
    [J]. 数学研究与评论, 2010, 30 (01) : 181 - 185
  • [3] Fractional Domination of the Cartesian Products in Graphs
    Baogen XU
    [J]. Journal of Mathematical Research with Applications, 2015, 35 (03) : 279 - 284
  • [4] Domination in digraphs and their direct and Cartesian products
    Bresar, Bostjan
    Kuenzel, Kirsti
    Rall, Douglas F.
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 359 - 377
  • [5] Paired Domination of Cartesian Products of Graphs
    Xin Min HOU
    [J]. Journal of Mathematical Research with Applications, 2010, (01) : 181 - 185
  • [6] Paired-domination of Cartesian products of graphs
    Bresar, Bostjan
    Henning, Michael A.
    Rall, Douglas F.
    [J]. UTILITAS MATHEMATICA, 2007, 73 : 255 - 265
  • [7] Connected domination game played on Cartesian products
    Bujtas, Csilla
    Dokyeesun, Pakanun
    Irsic, Vesna
    Klavcar, Sandi
    [J]. OPEN MATHEMATICS, 2019, 17 : 1269 - 1280
  • [8] Domination number of Cartesian products of directed cycles
    Zhang, Xindong
    Liu, Juan
    Chen, Xing
    Meng, Jixiang
    [J]. INFORMATION PROCESSING LETTERS, 2010, 111 (01) : 36 - 39
  • [9] Italian domination of Cartesian products of directed cycles
    van Bommel, Christopher M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 299 (299) : 82 - 86
  • [10] On the Total Domination Number of Cartesian Products of Graphs
    Michael A. Henning
    Douglas F. Rall
    [J]. Graphs and Combinatorics, 2005, 21 : 63 - 69