On an open problem concerning total domination critical graphs

被引:11
|
作者
Mojdeh, Doost Ali
Rad, Nader Jafari
机构
[1] Univ Mazandaran, Dept Math, Babol Sar, Iran
[2] Inst Studies Theoret Phys & Math, Tehran, Iran
关键词
total domination; vertex critical; diameter;
D O I
10.1016/j.exmath.2006.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G - v is less than the total domination number of G. We call these graphs gamma(1)-critical. If such a graph G has total domination number k, we call it k-gamma(1)-critical. We verify an open problem of k-gamma(1)-critical graphs and obtain some results on the characterization of total domination critical graphs of order n = Delta(G)(gamma(1)(G) - 1) + 1. (c) 2006 Elsevier GmbH. All rights reserved.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [31] TOTAL k-DISTANCE DOMINATION CRITICAL GRAPHS
    Mojdeh, D. A.
    Sayed-Khalkhali, A.
    Ahangar, H. Abdollahzadeh
    Zhao, Y.
    TRANSACTIONS ON COMBINATORICS, 2016, 5 (03) : 1 - 9
  • [32] On the Diameter of Total Domination Vertex-Critical Graphs
    Tao Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 193 - 203
  • [33] Properties of total domination edge-critical graphs
    Henning, Michael A.
    van der Merwe, Lucas C.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (02) : 147 - 153
  • [34] 4-Total domination game critical graphs
    Worawannotai, Chalermpong
    Charoensitthichai, Karnchana
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (05)
  • [35] Total Domination Edge Critical Graphs with Total Domination Number Three and Many Dominating Pairs
    Camino Balbuena
    Adriana Hansberg
    Teresa W. Haynes
    Michael A. Henning
    Graphs and Combinatorics, 2015, 31 : 1163 - 1176
  • [36] Total Domination Edge Critical Graphs with Total Domination Number Three and Many Dominating Pairs
    Balbuena, Camino
    Hansberg, Adriana
    Haynes, Teresa W.
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1163 - 1176
  • [37] TOTAL DOMINATION IN GRAPHS
    COCKAYNE, EJ
    DAWES, RM
    HEDETNIEMI, ST
    NETWORKS, 1980, 10 (03) : 211 - 219
  • [38] On α-total domination in graphs
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1143 - 1151
  • [39] Total domination in graphs
    Arumugam, S
    Thuraiswamy, A
    ARS COMBINATORIA, 1996, 43 : 89 - 92
  • [40] The maximum diameter of total domination edge-critical graphs
    Henning, Michael A.
    van der Merwe, Lucas C.
    DISCRETE MATHEMATICS, 2012, 312 (02) : 397 - 404