Total Domination Edge Critical Graphs with Total Domination Number Three and Many Dominating Pairs

被引:5
|
作者
Balbuena, Camino [1 ]
Hansberg, Adriana [2 ]
Haynes, Teresa W. [3 ,4 ]
Henning, Michael A. [4 ]
机构
[1] Dept Matemat Aplicada III, Barcelona 08034, Spain
[2] UNAM Juriquilla, Inst Matemat, Queretaro, Mexico
[3] E Tennessee State Univ, Dept Math & Stat, Johnson City, TN 37614 USA
[4] Univ Johannesburg, Dept Math, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Diameter critical; Domination; Diameter-2-critical; Total domination edge critical; Bull-free; DIAMETER-2-CRITICAL GRAPHS; CONJECTURE; COMPLEMENTS; SIMON; MURTY;
D O I
10.1007/s00373-014-1469-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter-2-critical graph of order is at most and that the extremal graphs are the complete bipartite graphs . A graph is -edge-critical, abbreviated , if its total domination number is 3 and the addition of any edge decreases the total domination number. It is known that proving the Murty-Simon Conjecture is equivalent to proving that the number of edges in a graph of order is greater than . We study a family of graphs of diameter 2 for which every pair of nonadjacent vertices dominates the graph. We show that the graphs in are precisely the bull-free graphs and that the number of edges in such graphs is at least , proving the conjecture for this family. We characterize the extremal graphs, and conjecture that this improved bound is in fact a lower bound for all graphs of diameter 2. Finally we slightly relax the requirement in the definition of -instead of requiring that all pairs of nonadjacent vertices dominate to requiring that only most of these pairs dominate-and prove the Murty-Simon equivalent conjecture for these graphs.
引用
收藏
页码:1163 / 1176
页数:14
相关论文
共 50 条
  • [1] Total Domination Edge Critical Graphs with Total Domination Number Three and Many Dominating Pairs
    Camino Balbuena
    Adriana Hansberg
    Teresa W. Haynes
    Michael A. Henning
    [J]. Graphs and Combinatorics, 2015, 31 : 1163 - 1176
  • [2] Total domination edge critical graphs
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    [J]. UTILITAS MATHEMATICA, 1998, 54 : 229 - 240
  • [3] On the total restrained domination edge critical graphs
    Koh, K. M.
    Maleki, Zeinab
    Omoomi, Behnaz
    [J]. ARS COMBINATORIA, 2013, 109 : 97 - 112
  • [4] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [5] On the total domination number of graphs
    Lam, Peter Che Bor
    Wei, Bing
    [J]. UTILITAS MATHEMATICA, 2007, 72 : 223 - 240
  • [6] DOMINATION NUMBER OF TOTAL GRAPHS
    Shariatinia, Abbas
    Maimani, Hamid Reza
    Yassemi, Siamak
    [J]. MATHEMATICA SLOVACA, 2016, 66 (06) : 1527 - 1535
  • [7] A note on extremal total domination edge critical graphs
    Hanson, D
    Wang, P
    [J]. UTILITAS MATHEMATICA, 2003, 63 : 89 - 96
  • [8] Total domination edge critical graphs with minimum diameter
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    [J]. ARS COMBINATORIA, 2003, 66 : 79 - 96
  • [9] Properties of total domination edge-critical graphs
    Henning, Michael A.
    van der Merwe, Lucas C.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (02) : 147 - 153
  • [10] Critical graphs with respect to total domination and connected domination
    Kaemawichanurat, P.
    Caccetta, L.
    Ananchuen, N.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 1 - 13