On an open problem concerning total domination critical graphs

被引:11
|
作者
Mojdeh, Doost Ali
Rad, Nader Jafari
机构
[1] Univ Mazandaran, Dept Math, Babol Sar, Iran
[2] Inst Studies Theoret Phys & Math, Tehran, Iran
关键词
total domination; vertex critical; diameter;
D O I
10.1016/j.exmath.2006.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G - v is less than the total domination number of G. We call these graphs gamma(1)-critical. If such a graph G has total domination number k, we call it k-gamma(1)-critical. We verify an open problem of k-gamma(1)-critical graphs and obtain some results on the characterization of total domination critical graphs of order n = Delta(G)(gamma(1)(G) - 1) + 1. (c) 2006 Elsevier GmbH. All rights reserved.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [21] A constructive characterization of total domination vertex critical graphs
    Wang, Chunxiang
    Hu, Zhiquan
    Li, Xiangwen
    DISCRETE MATHEMATICS, 2009, 309 (04) : 991 - 996
  • [22] A note on extremal total domination edge critical graphs
    Hanson, D
    Wang, P
    UTILITAS MATHEMATICA, 2003, 63 : 89 - 96
  • [23] Complexity issues concerning the quadruple Roman domination problem in graphs
    Palagiri, Venkata Subba Reddy
    Sharma, Guru Pratap
    Yero, Ismael G.
    THEORETICAL COMPUTER SCIENCE, 2025, 1026
  • [24] Matching Properties in Total Domination Vertex Critical Graphs
    Wang, Haichao
    Kang, Liying
    Shan, Erfang
    GRAPHS AND COMBINATORICS, 2009, 25 (06) : 851 - 861
  • [25] On the Diameter of Total Domination Vertex-Critical Graphs
    Wang, Tao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S193 - S203
  • [26] Total domination critical graphs with respect to relative complements
    Haynes, TW
    Henning, MA
    van der Merwe, LC
    ARS COMBINATORIA, 2002, 64 : 169 - 179
  • [27] Total domination edge critical graphs with minimum diameter
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    ARS COMBINATORIA, 2003, 66 : 79 - 96
  • [28] Matching Properties in Total Domination Vertex Critical Graphs
    Haichao Wang
    Liying Kang
    Erfang Shan
    Graphs and Combinatorics, 2009, 25 : 851 - 861
  • [29] Properties of total restrained domination vertex critical graphs
    Rad, Nader Jafari
    ARS COMBINATORIA, 2015, 122 : 275 - 287
  • [30] On total domination vertex critical graphs of high connectivity
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) : 1969 - 1973