Conservative homoclinic bifurcations and some applications

被引:3
|
作者
Gorodetski, Anton [1 ]
Kaloshin, Vadim [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Penn State Univ, Dept Math, State Coll, PA 16802 USA
基金
美国国家科学基金会;
关键词
AREA-PRESERVING MAPS; RESTRICTED 3-BODY PROBLEM; DYNAMICAL-SYSTEMS; SITNIKOV PROBLEM; ELLIPTIC ISLES; SEPARATRICES; POINTS; DIFFEOMORPHISMS; TANGENCIES; ABUNDANCE;
D O I
10.1134/S0081543809040063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study generic unfoldings of homoclinic tangencies of two-dimensional area-preserving diffeomorphisms (conservative New house phenomena) and show that they give rise to invariant hyperbolic sets of arbitrarily large Hausdorff dimension. As applications, we discuss the size of the stochastic layer of a standard map and the Hausdorff dimension of invariant hyperbolic sets for certain restricted three-body problems. We avoid involved technical details and only concentrate on the ideas of the proof of the presented results.
引用
收藏
页码:76 / 90
页数:15
相关论文
共 50 条