Predicting Homoclinic Bifurcations in Planar Autonomous Systems

被引:0
|
作者
Mohamed Belhaq
Faouzi Lakrad
Abdelhak Fahsi
机构
[1] Faculty of Sciences Ain Chock,Laboratory of Mechanics
[2] Group of Nonlinear Oscillations and Chaos,undefined
[3] Faculty of Sciences and Technique of Mohammedia,undefined
来源
Nonlinear Dynamics | 1999年 / 18卷
关键词
Periodic orbit; planar autonomous systems; homoclinic bifurcations; multiple scales technique; criteria;
D O I
暂无
中图分类号
学科分类号
摘要
An analytical method to predict the homoclinic bifurcation in a planar autonomous self-excited weakly nonlinear oscillator is presented. The method is mainly based on the collision between the periodic orbit undergoing the homoclinic bifurcation and the saddle fixed point. To illustrate the analytical predictive criteria, two typical examples are investigated. The results obtained in this work are then compared to Melnikov's technique and to a previous criterion based on the vanishing of the frequency. Numerical simulations are also provided.
引用
收藏
页码:303 / 310
页数:7
相关论文
共 50 条
  • [1] Predicting homoclinic bifurcations in planar autonomous systems
    Belhaq, M
    Lakrad, F
    Fahsi, A
    [J]. NONLINEAR DYNAMICS, 1999, 18 (04) : 303 - 310
  • [2] New analytical technique for predicting homoclinic bifurcations autonomous dynamical systems
    Belhaq, M
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1998, 25 (01) : 49 - 58
  • [3] Homoclinic Bifurcations in Planar Piecewise-Linear Systems
    Xu, Bin
    Yang, Fenghong
    Tang, Yun
    Lin, Mu
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [4] Homoclinic bifurcations in a planar dynamical system
    Giannakopoulos, F
    Küpper, T
    Zou, YK
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04): : 1183 - 1191
  • [5] Homoclinic Cycle Bifurcations in Planar Maps
    Kamiyama, Kyohei
    Komuro, Motomasa
    Aihara, Kazuyuki
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [6] Bifurcations of degenerate homoclinic solutions in discontinuous systems under non-autonomous perturbations
    Hua, Duo
    Liu, Xingbo
    [J]. CHAOS, 2024, 34 (06)
  • [7] Homoclinic bifurcations in reversible Hamiltonian systems
    Francisco, Gerson
    Fonseca, Andre
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) : 654 - 661
  • [8] A generalized Padé–Lindstedt–Poincaré method for predicting homoclinic and heteroclinic bifurcations of strongly nonlinear autonomous oscillators
    Zhenbo Li
    Jiashi Tang
    [J]. Nonlinear Dynamics, 2016, 84 : 1201 - 1223
  • [9] HOMOCLINIC ORBITS FOR EVENTUALLY AUTONOMOUS PLANAR FLOWS
    HOLMES, PJ
    STUART, CA
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (04): : 598 - 625
  • [10] Singular Homoclinic Bifurcations in a Planar Fast-Slow System
    Feng Xie
    Maoan Han
    Weijiang Zhang
    [J]. Journal of Dynamical and Control Systems, 2005, 11 : 433 - 448