Homoclinic bifurcations in a planar dynamical system

被引:2
|
作者
Giannakopoulos, F
Küpper, T
Zou, YK
机构
[1] German Natl Res Ctr Informat Technol, GMD, D-53754 Sankt Augustin, Germany
[2] Univ Cologne, Inst Math, D-50931 Cologne, Germany
[3] Jilin Univ, Dept Math, Changchun 130023, Peoples R China
来源
关键词
D O I
10.1142/S0218127401002675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The homoclinic bifurcation properties of a planar dynamical system are analyzed and the corresponding bifurcation diagram is presented. The occurrence of two Bogdanov-Takens bifurcation points provides two local existing curves of homoclinic orbits to a saddle excluding the separatrices not belonging to the homoclinic orbits. Using numerical techniques, these curves are continued in the parameter space. Two further curves of homoclinic orbits to a saddle including the separatrices not belonging to the homoclinic orbits are calculated by numerical methods. All these curves of homoclinic orbits have a unique intersection point, at which there exists a double homoclinic orbit. The local homoclinic bifurcation diagram of both the double homoclinic orbit point and the points of homoclinic orbits to a saddle-node are also gained by numerical computation and simulation.
引用
收藏
页码:1183 / 1191
页数:9
相关论文
共 50 条
  • [1] Singular Homoclinic Bifurcations in a Planar Fast-Slow System
    Feng Xie
    Maoan Han
    Weijiang Zhang
    [J]. Journal of Dynamical and Control Systems, 2005, 11 : 433 - 448
  • [2] Singular homoclinic bifurcations in a planar fast-slow system
    Xie, F
    Han, M
    Zhang, WJ
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2005, 11 (03) : 433 - 448
  • [3] Homoclinic Cycle Bifurcations in Planar Maps
    Kamiyama, Kyohei
    Komuro, Motomasa
    Aihara, Kazuyuki
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [4] Predicting Homoclinic Bifurcations in Planar Autonomous Systems
    Mohamed Belhaq
    Faouzi Lakrad
    Abdelhak Fahsi
    [J]. Nonlinear Dynamics, 1999, 18 : 303 - 310
  • [5] Predicting homoclinic bifurcations in planar autonomous systems
    Belhaq, M
    Lakrad, F
    Fahsi, A
    [J]. NONLINEAR DYNAMICS, 1999, 18 (04) : 303 - 310
  • [6] Homoclinic Bifurcations in Planar Piecewise-Linear Systems
    Xu, Bin
    Yang, Fenghong
    Tang, Yun
    Lin, Mu
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [7] CRITERION OF STOCHASTIC LAYER NEAR A PLANAR HOMOCLINIC ORBIT OF NONLINEAR DYNAMICAL SYSTEM
    Albert C. J. Luo(Department of Mechanical & Industrial Engineering University of Manitoba. Winnipeg
    [J]. Journal of Hydrodynamics, 1995, (02) : 35 - 50
  • [8] Computer proofs for bifurcations of planar dynamical systems
    Guckenheimer, J
    [J]. COMPUTATIONAL DIFFERENTIATION: TECHNIQUES, APPLICATIONS, AND TOOLS, 1996, : 229 - 237
  • [9] Homoclinic orbit bifurcations in a pattern formation system
    Yue, Bao-Zeng
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [10] New analytical technique for predicting homoclinic bifurcations autonomous dynamical systems
    Belhaq, M
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1998, 25 (01) : 49 - 58