NONUNIVERSAL ACCUMULATION OF BIFURCATIONS LEADING TO HOMOCLINIC TANGENCY

被引:0
|
作者
DAIDO, H
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1983年 / 69卷 / 04期
关键词
D O I
10.1143/PTP.69.1304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1304 / 1307
页数:4
相关论文
共 50 条
  • [1] On bifurcations of multidimensional diffeomorphisms having a homoclinic tangency to a saddle-node
    Serey V. Gonchenko
    Olga V. Gordeeva
    Valery I. Lukyanov
    Ivan I. Ovsyannikov
    Regular and Chaotic Dynamics, 2014, 19 : 461 - 473
  • [2] On bifurcations of multidimensional diffeomorphisms having a homoclinic tangency to a saddle-node
    Gonchenko, Serey V.
    Gordeeva, Olga V.
    Lukyanov, Valery I.
    Ovsyannikov, Ivan I.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (04): : 461 - 473
  • [3] On Bifurcations of Three-Dimensional Diffeomorphisms with a Homoclinic Tangency to a “Neutral” Saddle Fixed Point
    V. S. Gonchenko
    I. I. Ovsyannikov
    Journal of Mathematical Sciences, 2005, 128 (2) : 2774 - 2777
  • [4] Homoclinic tangency and variation of entropy
    Bronzi, Marcus
    Tahzibi, Ali
    PORTUGALIAE MATHEMATICA, 2020, 77 (3-4) : 383 - 398
  • [5] ON THE RATE OF APPROACH TO HOMOCLINIC TANGENCY
    CURRY, JH
    JOHNSON, JR
    PHYSICS LETTERS A, 1982, 92 (05) : 217 - 220
  • [6] Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models
    V.N. Belykh
    I.V. Belykh
    M. Colding-Jørgensen
    E. Mosekilde
    The European Physical Journal E, 2000, 3 : 205 - 219
  • [7] Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models
    Belykh, VN
    Belykh, IV
    Colding-Jorgensen, M
    Mosekilde, E
    EUROPEAN PHYSICAL JOURNAL E, 2000, 3 (03): : 205 - 219
  • [8] On dynamic properties of diffeomorphisms with homoclinic tangency
    S. V. Gonchenko
    D. V. Turaev
    L. P. Shil’nikov
    Journal of Mathematical Sciences, 2005, 126 (4) : 1317 - 1343
  • [9] Nondegenerate homoclinic tangency and hyperbolic sets
    Li, MC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (05) : 1521 - 1533
  • [10] Subcontinua of the closure of the unstable manifold at a homoclinic tangency
    Barge, M
    Diamond, B
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 289 - 307