Simulations of ENSO Phase-Locking in CMIP5 and CMIP6

被引:32
|
作者
Chen, Han-Ching [1 ]
Jin, Fei-Fei [1 ]
机构
[1] Univ Hawaii Manoa, Dept Atmospher Sci, Honolulu, HI 96822 USA
关键词
Dynamics; ENSO; Sea surface temperature; Thermocline; Climate models; Interannual variability; Seasonal cycle; NINO SOUTHERN-OSCILLATION; OCEAN RECHARGE PARADIGM; EL-NINO; OPTIMAL-GROWTH; MECHANISMS; CLIMATE; MODEL;
D O I
10.1175/JCLI-D-20-0874.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The characteristics of El Nino-Southern Oscillation (ENSO) phase-locking in observations and CMIP5 and CMIP6 models are examined in this study. Two metrics based on the peaking month histogram for all El Nino and La Nina events are adopted to delineate the basic features of ENSO phase-locking in terms of the preferred calendar month and strength of this preference. It turns out that most models are poor at simulating the ENSO phase-locking, either showing little peak strength or peaking at the wrong seasons. By deriving ENSO's linear dynamics based on the conceptual recharge oscillator (RO) framework through the seasonal linear inverse model (sLIM) approach, various simulated phase-locking behaviors of CMIP models are systematically investigated in comparison with observations. In observations, phase-locking is mainly attributed to the seasonal modulation of ENSO's SST growth rate. In contrast, in a significant portion of CMIP models, phase-locking is codetermined by the seasonal modulations of both SST growth and phase transition rates. Further study of the joint effects of SST growth and phase transition rates suggests that for simulating realistic winter peak ENSO phase-locking with the right dynamics, climate models need to have four key factors in the right combination: 1) correct phase of SST growth rate modulation peaking at the fall, 2) large-enough amplitude for the annual cycle in growth rate, 3) small amplitude of semiannual cycle in growth rate, and 4) small amplitude of seasonal modulation in SST phase transition rate.
引用
收藏
页码:5135 / 5149
页数:15
相关论文
共 50 条
  • [21] Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon
    Xin, Xiaoge
    Wu, Tongwen
    Zhang, Jie
    Yao, Junchen
    Fang, Yongjie
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2020, 40 (15) : 6423 - 6440
  • [22] Evaluation of Extreme Temperatures Over Australia in the Historical Simulations of CMIP5 and CMIP6 Models
    Deng, Xu
    Perkins-Kirkpatrick, Sarah E.
    Lewis, Sophie C.
    Ritchie, Elizabeth A.
    EARTHS FUTURE, 2021, 9 (07)
  • [23] Biases and improvements of the ENSO-East Asian winter monsoon teleconnection in CMIP5 and CMIP6 models
    Wenping Jiang
    Hainan Gong
    Ping Huang
    Lin Wang
    Gang Huang
    Lisuo Hu
    Climate Dynamics, 2022, 59 : 2467 - 2480
  • [24] Projections of Greenland climate change from CMIP5 and CMIP6
    Zhang, Qinglin
    Huai, Baojuan
    Ding, Minghu
    Sun, Weijun
    Liu, Weigang
    Yan, Jinpei
    Zhao, Shuhui
    Wang, Yetang
    Wang, Yuzhe
    Wang, Lei
    Che, Jiahang
    Dou, Jiahui
    Kang, Limin
    GLOBAL AND PLANETARY CHANGE, 2024, 232
  • [25] Comparison of CMIP6 and CMIP5 models in simulating climate extremes
    Chen, Huopo
    Sun, Jianqi
    Lin, Wenqing
    Xu, Huiwen
    SCIENCE BULLETIN, 2020, 65 (17) : 1415 - 1418
  • [26] On the spring stratospheric final warming in CMIP5 and CMIP6 models
    Hu, Jinggao
    Liu, Zexuan
    Xu, Haiming
    Ren, Rongcai
    Jin, Dachao
    SCIENCE CHINA-EARTH SCIENCES, 2023, 66 (01) : 129 - 145
  • [27] Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6
    Zhang, Shaobo
    Chen, Jie
    JOURNAL OF METEOROLOGICAL RESEARCH, 2021, 35 (04) : 646 - 662
  • [28] Comparison of trends in the Hadley circulation between CMIP6 and CMIP5
    Xia, Yan
    Hu, Yongyun
    Liu, Jiping
    SCIENCE BULLETIN, 2020, 65 (19) : 1667 - 1674
  • [29] On the spring stratospheric final warming in CMIP5 and CMIP6 models
    Jinggao HU
    Zexuan LIU
    Haiming XU
    Rongcai REN
    Dachao JIN
    Science China Earth Sciences, 2023, 66 (01) : 129 - 145
  • [30] Climate Model Projections for Canada: A Comparison of CMIP5 and CMIP6
    Sobie, S. R.
    Zwiers, F. W.
    Curry, C. L.
    ATMOSPHERE-OCEAN, 2021, 59 (4-5) : 269 - 284