Classification of breast cancer using microarray gene expression data: A survey

被引:35
|
作者
Abd-Elnaby, Muhammed [1 ]
Alfonse, Marco [1 ]
Roushdy, Mohamed [2 ]
机构
[1] Ain Shams Univ, Fac Comp & Informat Sci, Cairo, Egypt
[2] Future Univ, Fac Comp & Informat Technol, New Cairo, Egypt
关键词
Feature selection; Machine learning; Cancer classification; Microarray data;
D O I
10.1016/j.jbi.2021.103764
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cancer, in particular breast cancer, is considered one of the most common causes of death worldwide according to the world health organization. For this reason, extensive research efforts have been done in the area of accurate and early diagnosis of cancer in order to increase the likelihood of cure. Among the available tools for diagnosing cancer, microarray technology has been proven to be effective. Microarray technology analyzes the expression level of thousands of genes simultaneously. Although the huge number of features or genes in the microarray data may seem advantageous, many of these features are irrelevant or redundant resulting in the deterioration of classification accuracy. To overcome this challenge, feature selection techniques are a mandatory preprocessing step before the classification process. In the paper, the main feature selection and classification techniques introduced in the literature for cancer (particularly breast cancer) are reviewed to improve the microarray-based classification.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A Comparative Study of Gene Selection Methods for Cancer Classification Using Microarray Data
    Babu, Manish
    Sarkar, Kamal
    2016 SECOND IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2016, : 204 - 211
  • [42] A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data
    Wang, Hong
    Jing, Xingjian
    Niu, Ben
    KNOWLEDGE-BASED SYSTEMS, 2017, 126 : 8 - 19
  • [43] Feature selection methods on gene expression microarray data for cancer classification: A systematic review
    Alhenawi, Esra'a
    Al-Sayyed, Rizik
    Hudaib, Amjad
    Mirjalili, Seyedali
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [44] Spectral pattern comparison methods for cancer classification based on microarray gene expression data
    Pham, Tuan D.
    Beck, Dominik
    Yan, Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (11) : 2425 - 2430
  • [45] Active Learning Using Fuzzy k-NN for Cancer Classification from Microarray Gene Expression Data
    Halder, Anindya
    Dey, Samrat
    Kumar, Ansuman
    ADVANCES IN COMMUNICATION AND COMPUTING, 2015, 347 : 103 - 113
  • [46] Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data
    Lokeswari Venkataramana
    Shomona Gracia Jacob
    Rajavel Ramadoss
    Dodda Saisuma
    Dommaraju Haritha
    Kunthipuram Manoja
    Genes & Genomics, 2019, 41 : 1301 - 1313
  • [47] Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data
    Venkataramana, Lokeswari
    Jacob, Shomona Gracia
    Ramadoss, Rajavel
    Saisuma, Dodda
    Haritha, Dommaraju
    Manoja, Kunthipuram
    GENES & GENOMICS, 2019, 41 (11) : 1301 - 1313
  • [48] Cancer Classification Using Microarray Data By DPCAForest
    Deng, Xiaoheng
    Xu, Yuebin
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1081 - 1087
  • [49] Feature Selection for Cancer Classification on Microarray Expression Data
    Hsu, Hui-Huang
    Lu, Ming-Da
    ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 3, PROCEEDINGS, 2008, : 153 - 158
  • [50] Identification of Breast Cancer Subtypes Using Multiple Gene Expression Microarray Datasets
    Mendes, Alexandre
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 92 - 101