Spectral pattern comparison methods for cancer classification based on microarray gene expression data

被引:6
|
作者
Pham, Tuan D. [1 ]
Beck, Dominik
Yan, Hong
机构
[1] James Cook Univ N Queensland, Bioinformat Applicat Res Ctr, Townsville, Qld 4811, Australia
[2] James Cook Univ N Queensland, Sch Informat Technol, Townsville, Qld 4811, Australia
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
关键词
classification; feature selection; microarrays; spectral distortions; vector quantization;
D O I
10.1109/TCSI.2006.884407
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present, in this paper, two spectral pattern comparison methods for cancer classification using microarray gene expression data. The proposed methods are different from other current classifiers in the ways features are selected and pattern similarities measured. In addition, these spectral methods do not require any data preprocessing which is neccessary for many other classification techniques. Expertimental results using three popular microarray data sets demonstrate the robustness and effectiveness of the spectral pattern classifiers.
引用
收藏
页码:2425 / 2430
页数:6
相关论文
共 50 条
  • [1] Spectral Methods for Cancer Classification using Microarray Data
    Kim, Saejoon
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 588 - 592
  • [2] Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data
    Huang, Desheng
    Quan, Yu
    He, Miao
    Zhou, Baosen
    [J]. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2009, 28
  • [3] Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data
    Desheng Huang
    Yu Quan
    Miao He
    Baosen Zhou
    [J]. Journal of Experimental & Clinical Cancer Research, 28
  • [4] A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification
    Almugren, Nada
    Alshamlan, Hala
    [J]. IEEE ACCESS, 2019, 7 : 78533 - 78548
  • [5] Feature selection methods on gene expression microarray data for cancer classification: A systematic review
    Alhenawi, Esra'a
    Al-Sayyed, Rizik
    Hudaib, Amjad
    Mirjalili, Seyedali
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [6] Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning
    Guillen, Pablo
    Ebalunode, Jerry
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1403 - 1405
  • [7] Cancer Classification from Gene Expression Based Microarray Data Using SVM Ensemble
    Begum, Shemim
    Chakraborty, Debasis
    Sarkar, Ram
    [J]. 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), 2015, : 13 - 16
  • [8] ANFIS-Based Wrapper Model Gene Selection for Cancer Classification on Microarray Gene Expression Data
    Mahmoudi, Sina
    Lahijan, Biyuk Sadeghi
    Kanan, Hamidreza Rashidy
    [J]. 2013 13TH IRANIAN CONFERENCE ON FUZZY SYSTEMS (IFSC), 2013,
  • [9] Comparison of batch adjustment methods for the analysis of gene expression microarray data
    Gao, M.
    Baty, F.
    Schumacher, M.
    Brutsche, M.
    [J]. SWISS MEDICAL WEEKLY, 2008, 138 : 33S - 33S
  • [10] Classification of breast cancer using microarray gene expression data: A survey
    Abd-Elnaby, Muhammed
    Alfonse, Marco
    Roushdy, Mohamed
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 117