W-SOBOLEV SPACES: HIGHER ORDER AND REGULARITY

被引:2
|
作者
Simas, Alexandre B. [1 ]
Valenim, Fabio J. [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, ES, Brazil
关键词
W-Sobolev spaces; second-order elliptic equations; special Fourier series; regularity; compact embedding; EXCLUSION PROCESSES; CONDUCTANCES;
D O I
10.3934/cpaa.2015.14.597
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fix a function W(x(1), ... ,x(d)) = Sigma(d)(k=1) W-k(x(k)) where each W-k: R -> R is a right continuous with left limits and strictly increasing function, and consider the W-laplacian given by Delta(W) = Sigma(d)(i=1) partial derivative(xi)partial derivative W-i, which is a generalization of the laplacian operator. In this work we introduce the W-Sobolev spaces of higher order, thus extending the notion of W-Sobolev spaces introduced in Simas and Valentim (2011) [7]. We then provide a characterization of these spaces in terms of a suitable Fourier series, and conclude the paper with some results on elliptic regularity of the problem lambda u - Delta(W)u = f, for lambda >= 0.
引用
收藏
页码:597 / 607
页数:11
相关论文
共 50 条
  • [1] W-Sobolev spaces
    Simas, Alexandre B.
    Valentim, Fabio J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 214 - 230
  • [2] Low Regularity for the Higher Order Nonlinear Dispersive Equation in Sobolev Spaces of Negative Index
    Zaiyun Zhang
    Zhenhai Liu
    Mingbao Sun
    Songhua Li
    Journal of Dynamics and Differential Equations, 2019, 31 : 419 - 433
  • [3] Low Regularity for the Higher Order Nonlinear Dispersive Equation in Sobolev Spaces of Negative Index
    Zhang, Zaiyun
    Liu, Zhenhai
    Sun, Mingbao
    Li, Songhua
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (01) : 419 - 433
  • [4] Endpoint Sobolev regularity of higher order maximal commutators
    Feng Liu
    Yuan Ma
    Banach Journal of Mathematical Analysis, 2023, 17
  • [5] Endpoint Sobolev regularity of higher order maximal commutators
    Liu, Feng
    Ma, Yuan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (04)
  • [6] On Euler Equations in Higher Order Sobolev Spaces
    Vitaly Moroz
    Potential Analysis, 2001, 14 : 93 - 106
  • [7] On Euler equations in higher order Sobolev spaces
    Moroz, V
    POTENTIAL ANALYSIS, 2001, 14 (01) : 93 - 106
  • [8] A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic problems
    Quoc Anh Ngo
    Van Hoang Nguyen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (10) : 5996 - 6032
  • [9] Anisotropic equations in weighted Sobolev spaces of higher order
    Chrif M.
    El Manouni S.
    Ricerche di Matematica, 2009, 58 (1) : 1 - 14
  • [10] HOW TO RECOGNIZE POLYNOMIALS IN HIGHER ORDER SOBOLEV SPACES
    Bojarski, Bogdan
    Ihnatsyeva, Lizaveta
    Kinnunen, Juha
    MATHEMATICA SCANDINAVICA, 2013, 112 (02) : 161 - 181