W-SOBOLEV SPACES: HIGHER ORDER AND REGULARITY

被引:2
|
作者
Simas, Alexandre B. [1 ]
Valenim, Fabio J. [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, ES, Brazil
关键词
W-Sobolev spaces; second-order elliptic equations; special Fourier series; regularity; compact embedding; EXCLUSION PROCESSES; CONDUCTANCES;
D O I
10.3934/cpaa.2015.14.597
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fix a function W(x(1), ... ,x(d)) = Sigma(d)(k=1) W-k(x(k)) where each W-k: R -> R is a right continuous with left limits and strictly increasing function, and consider the W-laplacian given by Delta(W) = Sigma(d)(i=1) partial derivative(xi)partial derivative W-i, which is a generalization of the laplacian operator. In this work we introduce the W-Sobolev spaces of higher order, thus extending the notion of W-Sobolev spaces introduced in Simas and Valentim (2011) [7]. We then provide a characterization of these spaces in terms of a suitable Fourier series, and conclude the paper with some results on elliptic regularity of the problem lambda u - Delta(W)u = f, for lambda >= 0.
引用
收藏
页码:597 / 607
页数:11
相关论文
共 50 条
  • [31] Hardy-Sobolev spaces of higher order associated to Hermite operator
    Huang, Jizheng
    Ying, Shuangshuang
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (04): : 858 - 871
  • [32] Higher order intrinsic weak differentiability and Sobolev spaces between manifolds
    Convent, Alexandra
    Van Schaftingen, Jean
    ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (03) : 303 - 332
  • [33] Weighted Sobolev spaces and regularity for polyhedral domains
    Ammann, Bernd
    Nistor, Victor
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) : 3650 - 3659
  • [34] Variable Exponent Sobolev Spaces and Regularity of Domains
    Gorka, Przemyslaw
    Karak, Nijjwal
    Pons, Daniel J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (07) : 7304 - 7319
  • [35] DEGENERATE SOBOLEV SPACES AND REGULARITY OF SUBELLIPTIC EQUATIONS
    Sawyer, Eric T.
    Wheeden, Richard L.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (04) : 1869 - 1906
  • [36] Variable Exponent Sobolev Spaces and Regularity of Domains
    Przemysław Górka
    Nijjwal Karak
    Daniel J. Pons
    The Journal of Geometric Analysis, 2021, 31 : 7304 - 7319
  • [37] Optimal Regularity Properties of the Generalized Sobolev Spaces
    Karadzhov, G. E.
    Mehmood, Qaisar
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [38] On the Sobolev spaces of infinite order
    Balashova, GS
    DOKLADY AKADEMII NAUK, 1997, 353 (02) : 151 - 152
  • [39] The phase spaces of a class of linear higher-order Sobolev type equations
    G. A. Sviridyuk
    A. A. Zamyshlyaeva
    Differential Equations, 2006, 42 : 269 - 278
  • [40] Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains
    Ebmeyer, C
    Liu, WB
    Steinhauer, M
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (02): : 353 - 374