W-SOBOLEV SPACES: HIGHER ORDER AND REGULARITY

被引:2
|
作者
Simas, Alexandre B. [1 ]
Valenim, Fabio J. [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, ES, Brazil
关键词
W-Sobolev spaces; second-order elliptic equations; special Fourier series; regularity; compact embedding; EXCLUSION PROCESSES; CONDUCTANCES;
D O I
10.3934/cpaa.2015.14.597
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fix a function W(x(1), ... ,x(d)) = Sigma(d)(k=1) W-k(x(k)) where each W-k: R -> R is a right continuous with left limits and strictly increasing function, and consider the W-laplacian given by Delta(W) = Sigma(d)(i=1) partial derivative(xi)partial derivative W-i, which is a generalization of the laplacian operator. In this work we introduce the W-Sobolev spaces of higher order, thus extending the notion of W-Sobolev spaces introduced in Simas and Valentim (2011) [7]. We then provide a characterization of these spaces in terms of a suitable Fourier series, and conclude the paper with some results on elliptic regularity of the problem lambda u - Delta(W)u = f, for lambda >= 0.
引用
收藏
页码:597 / 607
页数:11
相关论文
共 50 条