Endpoint Sobolev regularity of higher order maximal commutators

被引:0
|
作者
Feng Liu
Yuan Ma
机构
[1] Shandong University of Science and Technology,College of Mathematics and System Science
关键词
Higher order maximal commutator; Fractional maximal commutator; Boundedness; Continuity; 42B25; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to presenting some W1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,1}$$\end{document}-regularity properties of higher order maximal commutator and its fractional variant. More precisely, let k≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1,$$\end{document}α∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [0,1)$$\end{document} and b∈Lloc1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in L_{\textrm{loc}}^1 ({\mathbb {R}})$$\end{document}. We consider the following k-th order fractional maximal commutator Mb,αkf(x)=supt>0(2t)α-1∫x-tx+t|b(x)-b(z)|k|f(z)|dz,x∈R,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathfrak {M}}_{b,\alpha }^kf(x)=\sup \limits _{t>0}(2t)^{\alpha -1}\int _{x-t}^{x+t}|b(x)-b(z)|^k|f(z)|dz,\quad x\in {\mathbb {R}}, \end{aligned}$$\end{document}which includes the k-th order maximal commutator Mbk,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {M}}_b^k,$$\end{document} corresponding to the critical case α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document}. We establish the boundedness and continuity of the map f↦(Mb,αkf)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\mapsto ({\mathfrak {M}}_{b,\alpha }^kf)'$$\end{document} from W1,1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,1}({\mathbb {R}})$$\end{document} to Lq(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}({\mathbb {R}}),$$\end{document} provided that α∈[0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [0,1),$$\end{document}q∈(1,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,\infty ),$$\end{document}b∈Lip(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in {Lip}({\mathbb {R}})$$\end{document} and b′∈L1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b'\in L^1({\mathbb {R}})$$\end{document}. We emphasize that our work not only improves essentially some known results, but also provides a new and simpler proof of some known ones. It should be also pointed out that the above results are new, even in the special case k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Endpoint Sobolev regularity of higher order maximal commutators
    Liu, Feng
    Ma, Yuan
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (04)
  • [2] Endpoint Sobolev Regularity of the Fractional Maximal Commutators
    Ting Chen
    Feng Liu
    [J]. Journal of Fourier Analysis and Applications, 2022, 28
  • [3] Endpoint Sobolev Regularity of the Fractional Maximal Commutators
    Chen, Ting
    Liu, Feng
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (05)
  • [4] Regularity and continuity of higher order maximal commutators
    Liu, Feng
    Ma, Yuan
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (04)
  • [5] Sobolev regularity for commutators of the fractional maximal functions
    Liu, Feng
    Xi, Shuai
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (01)
  • [6] Sobolev regularity for commutators of the fractional maximal functions
    Feng Liu
    Shuai Xi
    [J]. Banach Journal of Mathematical Analysis, 2021, 15
  • [7] Endpoint Sobolev Regularity of Multilinear Maximal Operators
    Liu, Feng
    Zhang, Xiao
    Zhang, Huiyun
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (05): : 889 - 912
  • [8] A Note on Endpoint Sobolev Regularity of a Class of Bilinear Maximal Functions
    Feng Liu
    Qingying Xue
    Kôzô Yabuta
    [J]. Results in Mathematics, 2020, 75
  • [9] A Note on Endpoint Sobolev Regularity of a Class of Bilinear Maximal Functions
    Liu, Feng
    Xue, Qingying
    Yabuta, Kozo
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [10] Endpoint Sobolev Continuity of the Fractional Maximal Function in Higher Dimensions
    Beltran, David
    Madrid, Jose
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (22) : 17316 - 17342