A multi-animal tracker for studying complex behaviors

被引:29
|
作者
Itskovits, Eyal [1 ,2 ]
Levine, Amir [3 ]
Cohen, Ehud [3 ]
Zaslaver, Alon [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Genet, Silberman Inst Life Sci, Edmond J Safra Campus, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Biochem & Mol Biol, IMRIC, Sch Med, IL-91120 Jerusalem, Israel
来源
BMC BIOLOGY | 2017年 / 15卷
基金
欧洲研究理事会;
关键词
Multi-animal tracking; Image analyses; Chemotaxis; C; elegans; Locomotion; NEMATODE CAENORHABDITIS-ELEGANS; C-ELEGANS; CHEMOTAXIS; GENETICS; NEURONS; MECHANISMS; PHENOTYPES; DROSOPHILA; ETHOLOGY; CIRCUIT;
D O I
10.1186/s12915-017-0363-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Animals exhibit astonishingly complex behaviors. Studying the subtle features of these behaviors requires quantitative, high-throughput, and accurate systems that can cope with the often rich perplexing data. Results: Here, we present a Multi-Animal Tracker (MAT) that provides a user-friendly, end-to-end solution for imaging, tracking, and analyzing complex behaviors of multiple animals simultaneously. At the core of the tracker is a machine learning algorithm that provides immense flexibility to image various animals (e.g., worms, flies, zebrafish, etc.) under different experimental setups and conditions. Focusing on C. elegans worms, we demonstrate the vast advantages of using this MAT in studying complex behaviors. Beginning with chemotaxis, we show that approximately 100 animals can be tracked simultaneously, providing rich behavioral data. Interestingly, we reveal that worms' directional changes are biased, rather than random - a strategy that significantly enhances chemotaxis performance. Next, we show that worms can integrate environmental information and that directional changes mediate the enhanced chemotaxis towards richer environments. Finally, offering high-throughput and accurate tracking, we show that the system is highly suitable for longitudinal studies of aging- and proteotoxicity-associated locomotion deficits, enabling large-scale drug and genetic screens. Conclusions: Together, our tracker provides a powerful and simple system to study complex behaviors in a quantitative, high-throughput, and accurate manner.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A multi-animal tracker for studying complex behaviors
    Eyal Itskovits
    Amir Levine
    Ehud Cohen
    Alon Zaslaver
    [J]. BMC Biology, 15
  • [2] AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild
    Libo Zhang
    Junyuan Gao
    Zhen Xiao
    Heng Fan
    [J]. International Journal of Computer Vision, 2023, 131 : 496 - 513
  • [3] AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild
    Zhang, Libo
    Gao, Junyuan
    Xiao, Zhen
    Fan, Heng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (02) : 496 - 513
  • [4] AlphaTracker: a multi-animal tracking and behavioral analysis tool
    Chen, Zexin
    Zhang, Ruihan
    Fang, Hao-Shu
    Zhang, Yu E.
    Bal, Aneesh
    Zhou, Haowen
    Rock, Rachel R.
    Padilla-Coreano, Nancy
    Keyes, Laurel R.
    Zhu, Haoyi
    Li, Yong-Lu
    Komiyama, Takaki
    Tye, Kay M.
    Lu, Cewu
    [J]. FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2023, 17
  • [5] Multi-animal pose estimation, identification and tracking with DeepLabCut
    Jessy Lauer
    Mu Zhou
    Shaokai Ye
    William Menegas
    Steffen Schneider
    Tanmay Nath
    Mohammed Mostafizur Rahman
    Valentina Di Santo
    Daniel Soberanes
    Guoping Feng
    Venkatesh N. Murthy
    George Lauder
    Catherine Dulac
    Mackenzie Weygandt Mathis
    Alexander Mathis
    [J]. Nature Methods, 2022, 19 : 496 - 504
  • [6] Multi-animal pose estimation, identification and tracking with DeepLabCut
    Lauer, Jessy
    Zhou, Mu
    Ye, Shaokai
    Menegas, William
    Schneider, Steffen
    Nath, Tanmay
    Rahman, Mohammed Mostafizur
    Di Santo, Valentina
    Soberanes, Daniel
    Feng, Guoping
    Murthy, Venkatesh N.
    Lauder, George
    Dulac, Catherine
    Mathis, Mackenzie Weygandt
    Mathis, Alexander
    [J]. NATURE METHODS, 2022, 19 (04) : 496 - 504
  • [7] SLEAP: A deep learning system for multi-animal pose tracking
    Pereira, Talmo D.
    Tabris, Nathaniel
    Matsliah, Arie
    Turner, David M.
    Li, Junyu
    Ravindranath, Shruthi
    Papadoyannis, Eleni S.
    Normand, Edna
    Deutsch, David S.
    Wang, Z. Yan
    McKenzie-Smith, Grace C.
    Mitelut, Catalin C.
    Castro, Marielisa Diez
    D'Uva, John
    Kislin, Mikhail
    Sanes, Dan H.
    Kocher, Sarah D.
    Wang, Samuel S-H
    Falkner, Annegret L.
    Shaevitz, Joshua W.
    Murthy, Mala
    [J]. NATURE METHODS, 2022, 19 (04) : 486 - +
  • [8] Reconstruction of multi-animal PET acquisitions with anisotropically variant PSF
    Arias-Valcayo, F.
    Galve, P.
    Herraiz, Joaquin L.
    Vaquero, J. J.
    Desco, M.
    Udias, J. M.
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (06):
  • [9] SLEAP: A deep learning system for multi-animal pose tracking
    Talmo D. Pereira
    Nathaniel Tabris
    Arie Matsliah
    David M. Turner
    Junyu Li
    Shruthi Ravindranath
    Eleni S. Papadoyannis
    Edna Normand
    David S. Deutsch
    Z. Yan Wang
    Grace C. McKenzie-Smith
    Catalin C. Mitelut
    Marielisa Diez Castro
    John D’Uva
    Mikhail Kislin
    Dan H. Sanes
    Sarah D. Kocher
    Samuel S.-H. Wang
    Annegret L. Falkner
    Joshua W. Shaevitz
    Mala Murthy
    [J]. Nature Methods, 2022, 19 : 486 - 495
  • [10] A multi-animal model collaboration to speed up rare disease research
    Doughman, Elizabeth
    [J]. LAB ANIMAL, 2019, 48 (10) : 271 - 271