SLEAP: A deep learning system for multi-animal pose tracking

被引:161
|
作者
Pereira, Talmo D. [1 ,10 ]
Tabris, Nathaniel [1 ]
Matsliah, Arie [1 ]
Turner, David M. [1 ]
Li, Junyu [1 ]
Ravindranath, Shruthi [1 ]
Papadoyannis, Eleni S. [1 ]
Normand, Edna [1 ,2 ]
Deutsch, David S. [1 ]
Wang, Z. Yan [3 ,4 ]
McKenzie-Smith, Grace C. [5 ]
Mitelut, Catalin C. [6 ]
Castro, Marielisa Diez [6 ]
D'Uva, John [1 ,7 ]
Kislin, Mikhail [1 ]
Sanes, Dan H. [6 ,8 ,9 ]
Kocher, Sarah D. [3 ,4 ]
Wang, Samuel S-H [1 ,2 ]
Falkner, Annegret L. [1 ]
Shaevitz, Joshua W. [1 ,4 ,5 ]
Murthy, Mala [1 ]
机构
[1] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
[4] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[5] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[6] NYU, Ctr Neural Sci, New York, NY 10003 USA
[7] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[8] NYU, Dept Psychol, 6 Washington Pl, New York, NY 10003 USA
[9] NYU, Dept Biol, New York, NY 10003 USA
[10] Salk Inst Biol Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
关键词
D O I
10.1038/s41592-022-01426-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking. We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architecture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames per second, with latencies of less than 3.5 ms at full 1,024 x 1,024 image resolution. This makes SLEAP usable for real-time applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social interactions with another animal. SLEAP is a versatile deep learning-based multi-animal pose-tracking tool designed to work on videos of diverse animals, including during social behavior.
引用
收藏
页码:486 / +
页数:22
相关论文
共 50 条
  • [1] SLEAP: A deep learning system for multi-animal pose tracking
    Talmo D. Pereira
    Nathaniel Tabris
    Arie Matsliah
    David M. Turner
    Junyu Li
    Shruthi Ravindranath
    Eleni S. Papadoyannis
    Edna Normand
    David S. Deutsch
    Z. Yan Wang
    Grace C. McKenzie-Smith
    Catalin C. Mitelut
    Marielisa Diez Castro
    John D’Uva
    Mikhail Kislin
    Dan H. Sanes
    Sarah D. Kocher
    Samuel S.-H. Wang
    Annegret L. Falkner
    Joshua W. Shaevitz
    Mala Murthy
    [J]. Nature Methods, 2022, 19 : 486 - 495
  • [2] Publisher Correction: SLEAP: A deep learning system for multi-animal pose tracking
    Talmo D. Pereira
    Nathaniel Tabris
    Arie Matsliah
    David M. Turner
    Junyu Li
    Shruthi Ravindranath
    Eleni S. Papadoyannis
    Edna Normand
    David S. Deutsch
    Z. Yan Wang
    Grace C. McKenzie-Smith
    Catalin C. Mitelut
    Marielisa Diez Castro
    John D’Uva
    Mikhail Kislin
    Dan H. Sanes
    Sarah D. Kocher
    Samuel S.-H. Wang
    Annegret L. Falkner
    Joshua W. Shaevitz
    Mala Murthy
    [J]. Nature Methods, 2022, 19 : 628 - 628
  • [3] SLEAP: A deep learning system for multi-animal pose tracking (vol 19, pg 486, 2022)
    Pereira, Talmo D.
    Tabris, Nathaniel
    Matsliah, Arie
    Turner, David M.
    Li, Junyu
    Ravindranath, Shruthi
    Papadoyannis, Eleni S.
    Normand, Edna
    Deutsch, David S.
    Wang, Z. Yan
    McKenzie-Smith, Grace C.
    Mitelut, Catalin C.
    Castro, Marielisa Diez
    D'Uva, John
    Kislin, Mikhail
    Sanes, Dan H.
    Kocher, Sarah D.
    Wang, Samuel S. -H.
    Falkner, Annegret L.
    Shaevitz, Joshua W.
    Murthy, Mala
    [J]. NATURE METHODS, 2022, 19 (05) : 628 - 628
  • [4] Multi-animal pose estimation, identification and tracking with DeepLabCut
    Jessy Lauer
    Mu Zhou
    Shaokai Ye
    William Menegas
    Steffen Schneider
    Tanmay Nath
    Mohammed Mostafizur Rahman
    Valentina Di Santo
    Daniel Soberanes
    Guoping Feng
    Venkatesh N. Murthy
    George Lauder
    Catherine Dulac
    Mackenzie Weygandt Mathis
    Alexander Mathis
    [J]. Nature Methods, 2022, 19 : 496 - 504
  • [5] Multi-animal pose estimation, identification and tracking with DeepLabCut
    Lauer, Jessy
    Zhou, Mu
    Ye, Shaokai
    Menegas, William
    Schneider, Steffen
    Nath, Tanmay
    Rahman, Mohammed Mostafizur
    Di Santo, Valentina
    Soberanes, Daniel
    Feng, Guoping
    Murthy, Venkatesh N.
    Lauder, George
    Dulac, Catherine
    Mathis, Mackenzie Weygandt
    Mathis, Alexander
    [J]. NATURE METHODS, 2022, 19 (04) : 496 - 504
  • [6] Deep MAnTra: deep learning-based multi-animal tracking for Japanese macaques
    Pineda, Riza Rae
    Kubo, Takatomi
    Shimada, Masaki
    Ikeda, Kazushi
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2023, 28 (01) : 127 - 138
  • [7] Deep MAnTra: deep learning-based multi-animal tracking for Japanese macaques
    Riza Rae Pineda
    Takatomi Kubo
    Masaki Shimada
    Kazushi Ikeda
    [J]. Artificial Life and Robotics, 2023, 28 : 127 - 138
  • [8] AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild
    Libo Zhang
    Junyuan Gao
    Zhen Xiao
    Heng Fan
    [J]. International Journal of Computer Vision, 2023, 131 : 496 - 513
  • [9] AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild
    Zhang, Libo
    Gao, Junyuan
    Xiao, Zhen
    Fan, Heng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (02) : 496 - 513
  • [10] AlphaTracker: a multi-animal tracking and behavioral analysis tool
    Chen, Zexin
    Zhang, Ruihan
    Fang, Hao-Shu
    Zhang, Yu E.
    Bal, Aneesh
    Zhou, Haowen
    Rock, Rachel R.
    Padilla-Coreano, Nancy
    Keyes, Laurel R.
    Zhu, Haoyi
    Li, Yong-Lu
    Komiyama, Takaki
    Tye, Kay M.
    Lu, Cewu
    [J]. FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2023, 17