SLEAP: A deep learning system for multi-animal pose tracking

被引:161
|
作者
Pereira, Talmo D. [1 ,10 ]
Tabris, Nathaniel [1 ]
Matsliah, Arie [1 ]
Turner, David M. [1 ]
Li, Junyu [1 ]
Ravindranath, Shruthi [1 ]
Papadoyannis, Eleni S. [1 ]
Normand, Edna [1 ,2 ]
Deutsch, David S. [1 ]
Wang, Z. Yan [3 ,4 ]
McKenzie-Smith, Grace C. [5 ]
Mitelut, Catalin C. [6 ]
Castro, Marielisa Diez [6 ]
D'Uva, John [1 ,7 ]
Kislin, Mikhail [1 ]
Sanes, Dan H. [6 ,8 ,9 ]
Kocher, Sarah D. [3 ,4 ]
Wang, Samuel S-H [1 ,2 ]
Falkner, Annegret L. [1 ]
Shaevitz, Joshua W. [1 ,4 ,5 ]
Murthy, Mala [1 ]
机构
[1] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
[4] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[5] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[6] NYU, Ctr Neural Sci, New York, NY 10003 USA
[7] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[8] NYU, Dept Psychol, 6 Washington Pl, New York, NY 10003 USA
[9] NYU, Dept Biol, New York, NY 10003 USA
[10] Salk Inst Biol Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
关键词
D O I
10.1038/s41592-022-01426-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking. We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architecture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames per second, with latencies of less than 3.5 ms at full 1,024 x 1,024 image resolution. This makes SLEAP usable for real-time applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social interactions with another animal. SLEAP is a versatile deep learning-based multi-animal pose-tracking tool designed to work on videos of diverse animals, including during social behavior.
引用
收藏
页码:486 / +
页数:22
相关论文
共 50 条
  • [21] A noise delivery system for multi-animal multi-level whole body ototoxicity studies
    Stubbs, John E.
    Slagley, Jeremy M.
    Reboulet, James E.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2015, 138 (05): : 3181 - 3187
  • [22] Learning interaction rules from multi-animal trajectories via augmented behavioral models
    Fujii, Keisuke
    Takeishi, Naoya
    Tsutsui, Kazushi
    Fujioka, Emyo
    Nishiumi, Nozomi
    Tanaka, Ryoya
    Fukushiro, Mika
    Ide, Kaoru
    Kohno, Hiroyoshi
    Yoda, Ken
    Takahashi, Susumu
    Hiryu, Shizuko
    Kawahara, Yoshinobu
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [23] Deep learning in multiple animal tracking: A survey
    Liu, Yeqiang
    Li, Weiran
    Liu, Xue
    Li, Zhenbo
    Yue, Jun
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [24] Assessment of deep learning pose estimates for sports collision tracking
    Blythman, Richard
    Saxena, Manan
    Tierney, Gregory J.
    Richter, Chris
    Smolic, Aljosa
    Simms, Ciaran
    [J]. JOURNAL OF SPORTS SCIENCES, 2022, 40 (17) : 1885 - 1900
  • [25] Real-time Multi-person Pose Tracking Method Using Deep Reinforcement Learning
    Jia, Baojian
    Ren, Jie
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (06)
  • [26] Multi-Pose Face Recognition And Tracking System
    Nair, Binu Muraleedharan
    Foytik, Jacob
    Tompkins, Richard
    Diskin, Yakov
    Aspiras, Theus
    Asari, Vijayan
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [27] Performance evaluation of a preclinical SPECT/CT system for multi-animal and multi-isotope quantitative experiments
    Elena Prieto
    Leticia Irazola
    María Collantes
    Margarita Ecay
    Teresa Cuenca
    Josep Mª Martí-Climent
    Iván Peñuelas
    [J]. Scientific Reports, 12
  • [28] Multi-Sensors System and Deep Learning Models for Object Tracking
    El Natour, Ghina
    Bresson, Guillaume
    Trichet, Remi
    [J]. SENSORS, 2023, 23 (18)
  • [29] Reconstruction of multi-animal PET acquisitions with anisotropically variant PSF
    Arias-Valcayo, F.
    Galve, P.
    Herraiz, Joaquin L.
    Vaquero, J. J.
    Desco, M.
    Udias, J. M.
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (06):
  • [30] Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive Overview
    Fan, Zhaoxin
    Zhu, Yazhi
    He, Yulin
    Sun, Qi
    Liu, Hongyan
    He, Jun
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (04)