AlphaTracker: a multi-animal tracking and behavioral analysis tool

被引:7
|
作者
Chen, Zexin [1 ]
Zhang, Ruihan [2 ,3 ]
Fang, Hao-Shu [1 ]
Zhang, Yu E. [4 ,5 ]
Bal, Aneesh [6 ,7 ]
Zhou, Haowen [2 ]
Rock, Rachel R. [7 ]
Padilla-Coreano, Nancy [7 ,8 ]
Keyes, Laurel R. [7 ,9 ]
Zhu, Haoyi [1 ]
Li, Yong-Lu [1 ]
Komiyama, Takaki [5 ]
Tye, Kay M. [7 ,9 ]
Lu, Cewu [1 ,10 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Zhiyuan Coll, Shanghai, Peoples R China
[3] MIT, Media Arts & Sci, Cambridge, MA USA
[4] Univ Calif San Diego, Ctr Neural Circuits & Behav, Dept Neurobiol, La Jolla, CA USA
[5] Univ Calif San Diego, Dept Neurosci, La Jolla, CA USA
[6] Johns Hopkins Univ, Dept Psychol & Brain Sci, Baltimore, MD USA
[7] Salk Inst Biol Studies, La Jolla, CA 92037 USA
[8] Univ Florida, Dept Neurosci, Gainesville, FL USA
[9] Howard Hughes Med Inst, Salk Inst, La Jolla, CA 92093 USA
[10] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
来源
基金
国家重点研发计划;
关键词
neuroscience; computer vision; animal behavior; animal tracking; behavioral clustering;
D O I
10.3389/fnbeh.2023.1111908
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Computer vision has emerged as a powerful tool to elevate behavioral research. This protocol describes a computer vision machine learning pipeline called AlphaTracker, which has minimal hardware requirements and produces reliable tracking of multiple unmarked animals, as well as behavioral clustering. AlphaTracker pairs a top-down pose-estimation software combined with unsupervised clustering to facilitate behavioral motif discovery that will accelerate behavioral research. All steps of the protocol are provided as open-source software with graphic user interfaces or implementable with command-line prompts. Users with a graphical processing unit (GPU) can model and analyze animal behaviors of interest in less than a day. AlphaTracker greatly facilitates the analysis of the mechanism of individual/social behavior and group dynamics.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild
    Libo Zhang
    Junyuan Gao
    Zhen Xiao
    Heng Fan
    [J]. International Journal of Computer Vision, 2023, 131 : 496 - 513
  • [2] AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild
    Zhang, Libo
    Gao, Junyuan
    Xiao, Zhen
    Fan, Heng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (02) : 496 - 513
  • [3] Multi-animal pose estimation, identification and tracking with DeepLabCut
    Jessy Lauer
    Mu Zhou
    Shaokai Ye
    William Menegas
    Steffen Schneider
    Tanmay Nath
    Mohammed Mostafizur Rahman
    Valentina Di Santo
    Daniel Soberanes
    Guoping Feng
    Venkatesh N. Murthy
    George Lauder
    Catherine Dulac
    Mackenzie Weygandt Mathis
    Alexander Mathis
    [J]. Nature Methods, 2022, 19 : 496 - 504
  • [4] Multi-animal pose estimation, identification and tracking with DeepLabCut
    Lauer, Jessy
    Zhou, Mu
    Ye, Shaokai
    Menegas, William
    Schneider, Steffen
    Nath, Tanmay
    Rahman, Mohammed Mostafizur
    Di Santo, Valentina
    Soberanes, Daniel
    Feng, Guoping
    Murthy, Venkatesh N.
    Lauder, George
    Dulac, Catherine
    Mathis, Mackenzie Weygandt
    Mathis, Alexander
    [J]. NATURE METHODS, 2022, 19 (04) : 496 - 504
  • [5] SLEAP: A deep learning system for multi-animal pose tracking
    Pereira, Talmo D.
    Tabris, Nathaniel
    Matsliah, Arie
    Turner, David M.
    Li, Junyu
    Ravindranath, Shruthi
    Papadoyannis, Eleni S.
    Normand, Edna
    Deutsch, David S.
    Wang, Z. Yan
    McKenzie-Smith, Grace C.
    Mitelut, Catalin C.
    Castro, Marielisa Diez
    D'Uva, John
    Kislin, Mikhail
    Sanes, Dan H.
    Kocher, Sarah D.
    Wang, Samuel S-H
    Falkner, Annegret L.
    Shaevitz, Joshua W.
    Murthy, Mala
    [J]. NATURE METHODS, 2022, 19 (04) : 486 - +
  • [6] SLEAP: A deep learning system for multi-animal pose tracking
    Talmo D. Pereira
    Nathaniel Tabris
    Arie Matsliah
    David M. Turner
    Junyu Li
    Shruthi Ravindranath
    Eleni S. Papadoyannis
    Edna Normand
    David S. Deutsch
    Z. Yan Wang
    Grace C. McKenzie-Smith
    Catalin C. Mitelut
    Marielisa Diez Castro
    John D’Uva
    Mikhail Kislin
    Dan H. Sanes
    Sarah D. Kocher
    Samuel S.-H. Wang
    Annegret L. Falkner
    Joshua W. Shaevitz
    Mala Murthy
    [J]. Nature Methods, 2022, 19 : 486 - 495
  • [7] Publisher Correction: SLEAP: A deep learning system for multi-animal pose tracking
    Talmo D. Pereira
    Nathaniel Tabris
    Arie Matsliah
    David M. Turner
    Junyu Li
    Shruthi Ravindranath
    Eleni S. Papadoyannis
    Edna Normand
    David S. Deutsch
    Z. Yan Wang
    Grace C. McKenzie-Smith
    Catalin C. Mitelut
    Marielisa Diez Castro
    John D’Uva
    Mikhail Kislin
    Dan H. Sanes
    Sarah D. Kocher
    Samuel S.-H. Wang
    Annegret L. Falkner
    Joshua W. Shaevitz
    Mala Murthy
    [J]. Nature Methods, 2022, 19 : 628 - 628
  • [8] Development of deep multi-animal tracking for domestic cats toward future application to social behavior analysis
    Nakajima, Nina
    Koyasu, Hikari
    Maruno, Yuki
    Nagasawa, Miho
    Kikusui, Takefumi
    Kubo, Takatomi
    [J]. ADVANCED ROBOTICS, 2024, 38 (14) : 958 - 966
  • [9] Deep MAnTra: deep learning-based multi-animal tracking for Japanese macaques
    Pineda, Riza Rae
    Kubo, Takatomi
    Shimada, Masaki
    Ikeda, Kazushi
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2023, 28 (01) : 127 - 138
  • [10] Deep MAnTra: deep learning-based multi-animal tracking for Japanese macaques
    Riza Rae Pineda
    Takatomi Kubo
    Masaki Shimada
    Kazushi Ikeda
    [J]. Artificial Life and Robotics, 2023, 28 : 127 - 138