AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild

被引:0
|
作者
Libo Zhang
Junyuan Gao
Zhen Xiao
Heng Fan
机构
[1] Institute of Software Chinese Academy of Sciences,State Key Laboratory of Computer Science
[2] University of Chinese Academy of Sciences,Hangzhou Institute for Advanced Study
[3] Nanjing Institute of Software Technology,Department of Computer Science and Engineering
[4] University of North Texas,undefined
来源
关键词
Tracking; Multi-object tracking (MOT); Multi-animal tracking (MAT); AnimalTrack; Tracking evaluation;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-animal tracking (MAT), a multi-object tracking (MOT) problem, is crucial for animal motion and behavior analysis and has many crucial applications such as biology, ecology and animal conservation. Despite its importance, MAT is largely under-explored compared to other MOT problems such as multi-human tracking due to the scarcity of dedicated benchmarks. To address this problem, we introduce AnimalTrack, a dedicated benchmark for multi-animal tracking in the wild. Specifically, AnimalTrack consists of 58 sequences from a diverse selection of 10 common animal categories. On average, each sequence comprises of 33 target objects for tracking. In order to ensure high quality, every frame in AnimalTrack is manually labeled with careful inspection and refinement. To our best knowledge, AnimalTrack is the first benchmark dedicated to multi-animal tracking. In addition, to understand how existing MOT algorithms perform on AnimalTrack and provide baselines for future comparison, we extensively evaluate 14 state-of-the-art representative trackers. The evaluation results demonstrate that, not surprisingly, most of these trackers become degenerated due to the differences between pedestrians and animals in various aspects (e.g., pose, motion, and appearance), and more efforts are desired to improve multi-animal tracking. We hope that AnimalTrack together with evaluation and analysis will foster further progress on multi-animal tracking. The dataset and evaluation as well as our analysis will be made available upon the acceptance.
引用
收藏
页码:496 / 513
页数:17
相关论文
共 50 条
  • [1] AnimalTrack: A Benchmark for Multi-Animal Tracking in the Wild
    Zhang, Libo
    Gao, Junyuan
    Xiao, Zhen
    Fan, Heng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (02) : 496 - 513
  • [2] AlphaTracker: a multi-animal tracking and behavioral analysis tool
    Chen, Zexin
    Zhang, Ruihan
    Fang, Hao-Shu
    Zhang, Yu E.
    Bal, Aneesh
    Zhou, Haowen
    Rock, Rachel R.
    Padilla-Coreano, Nancy
    Keyes, Laurel R.
    Zhu, Haoyi
    Li, Yong-Lu
    Komiyama, Takaki
    Tye, Kay M.
    Lu, Cewu
    [J]. FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2023, 17
  • [3] WATB: Wild Animal Tracking Benchmark
    Fasheng Wang
    Ping Cao
    Fu Li
    Xing Wang
    Bing He
    Fuming Sun
    [J]. International Journal of Computer Vision, 2023, 131 : 899 - 917
  • [4] WATB: Wild Animal Tracking Benchmark
    Wang, Fasheng
    Cao, Ping
    Li, Fu
    Wang, Xing
    He, Bing
    Sun, Fuming
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) : 899 - 917
  • [5] Multi-animal pose estimation, identification and tracking with DeepLabCut
    Jessy Lauer
    Mu Zhou
    Shaokai Ye
    William Menegas
    Steffen Schneider
    Tanmay Nath
    Mohammed Mostafizur Rahman
    Valentina Di Santo
    Daniel Soberanes
    Guoping Feng
    Venkatesh N. Murthy
    George Lauder
    Catherine Dulac
    Mackenzie Weygandt Mathis
    Alexander Mathis
    [J]. Nature Methods, 2022, 19 : 496 - 504
  • [6] Multi-animal pose estimation, identification and tracking with DeepLabCut
    Lauer, Jessy
    Zhou, Mu
    Ye, Shaokai
    Menegas, William
    Schneider, Steffen
    Nath, Tanmay
    Rahman, Mohammed Mostafizur
    Di Santo, Valentina
    Soberanes, Daniel
    Feng, Guoping
    Murthy, Venkatesh N.
    Lauder, George
    Dulac, Catherine
    Mathis, Mackenzie Weygandt
    Mathis, Alexander
    [J]. NATURE METHODS, 2022, 19 (04) : 496 - 504
  • [7] SLEAP: A deep learning system for multi-animal pose tracking
    Pereira, Talmo D.
    Tabris, Nathaniel
    Matsliah, Arie
    Turner, David M.
    Li, Junyu
    Ravindranath, Shruthi
    Papadoyannis, Eleni S.
    Normand, Edna
    Deutsch, David S.
    Wang, Z. Yan
    McKenzie-Smith, Grace C.
    Mitelut, Catalin C.
    Castro, Marielisa Diez
    D'Uva, John
    Kislin, Mikhail
    Sanes, Dan H.
    Kocher, Sarah D.
    Wang, Samuel S-H
    Falkner, Annegret L.
    Shaevitz, Joshua W.
    Murthy, Mala
    [J]. NATURE METHODS, 2022, 19 (04) : 486 - +
  • [8] SLEAP: A deep learning system for multi-animal pose tracking
    Talmo D. Pereira
    Nathaniel Tabris
    Arie Matsliah
    David M. Turner
    Junyu Li
    Shruthi Ravindranath
    Eleni S. Papadoyannis
    Edna Normand
    David S. Deutsch
    Z. Yan Wang
    Grace C. McKenzie-Smith
    Catalin C. Mitelut
    Marielisa Diez Castro
    John D’Uva
    Mikhail Kislin
    Dan H. Sanes
    Sarah D. Kocher
    Samuel S.-H. Wang
    Annegret L. Falkner
    Joshua W. Shaevitz
    Mala Murthy
    [J]. Nature Methods, 2022, 19 : 486 - 495
  • [9] Publisher Correction: SLEAP: A deep learning system for multi-animal pose tracking
    Talmo D. Pereira
    Nathaniel Tabris
    Arie Matsliah
    David M. Turner
    Junyu Li
    Shruthi Ravindranath
    Eleni S. Papadoyannis
    Edna Normand
    David S. Deutsch
    Z. Yan Wang
    Grace C. McKenzie-Smith
    Catalin C. Mitelut
    Marielisa Diez Castro
    John D’Uva
    Mikhail Kislin
    Dan H. Sanes
    Sarah D. Kocher
    Samuel S.-H. Wang
    Annegret L. Falkner
    Joshua W. Shaevitz
    Mala Murthy
    [J]. Nature Methods, 2022, 19 : 628 - 628
  • [10] Deep MAnTra: deep learning-based multi-animal tracking for Japanese macaques
    Pineda, Riza Rae
    Kubo, Takatomi
    Shimada, Masaki
    Ikeda, Kazushi
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2023, 28 (01) : 127 - 138