Accelerating Convolution Quadrature

被引:0
|
作者
Weile, Daniel S. [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, 140 Evans Hall, Newark, DE 19716 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolution quadtrature (CQ) is a method for discretizing continuous convolution integrals by substituting a discrete Z domain approximation for the Laplace domain frequency parameter s. The model CQ provides is inherently dispersive, and so gives rise to a discrete Green's function with expanding temporal support. This work investigates two approaches to alleviating this problem: dispersion halting and fast Fourier transform methods. Numerical results will be used to compare the methods with each other in both dispersive and nondispersive media.
引用
收藏
页码:341 / 344
页数:4
相关论文
共 50 条
  • [21] On a Reformulated Convolution Quadrature Based Boundary Element Method
    Schanz, M.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 109 - 129
  • [22] An error analysis of Runge-Kutta convolution quadrature
    Banjai, Lehel
    Lubich, Christian
    BIT NUMERICAL MATHEMATICS, 2011, 51 (03) : 483 - 496
  • [23] CONVOLUTION QUADRATURE AND DISCRETIZED OPERATIONAL CALCULUS .1.
    LUBICH, C
    NUMERISCHE MATHEMATIK, 1988, 52 (02) : 129 - 145
  • [24] Runge-Kutta Based Generalized Convolution Quadrature
    Lopez-Fernandez, Maria
    Sauter, Stefan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [25] Fractional convolution quadrature based on generalized Adams methods
    Lidia Aceto
    Cecilia Magherini
    Paolo Novati
    Calcolo, 2014, 51 : 441 - 463
  • [26] On superconvergence of Runge–Kutta convolution quadrature for the wave equation
    Jens Markus Melenk
    Alexander Rieder
    Numerische Mathematik, 2021, 147 : 157 - 188
  • [27] Fast convolution quadrature based impedance boundary conditions
    Hiptmair, Ralf
    Lopez-Fernandez, Maria
    Paganini, Alberto
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 500 - 517
  • [28] Fractional convolution quadrature based on generalized Adams methods
    Aceto, Lidia
    Magherini, Cecilia
    Novati, Paolo
    CALCOLO, 2014, 51 (03) : 441 - 463
  • [29] Fast convolution quadrature for the wave equation in three dimensions
    Banjai, L.
    Kachanovska, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 279 : 103 - 126
  • [30] Wave propagation problems treated with convolution quadrature and BEM
    Banjai, Lehel
    Schanz, Martin
    Lecture Notes in Applied and Computational Mechanics, 2012, 63 LNAC : 145 - 184