Accelerating Convolution Quadrature

被引:0
|
作者
Weile, Daniel S. [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, 140 Evans Hall, Newark, DE 19716 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolution quadtrature (CQ) is a method for discretizing continuous convolution integrals by substituting a discrete Z domain approximation for the Laplace domain frequency parameter s. The model CQ provides is inherently dispersive, and so gives rise to a discrete Green's function with expanding temporal support. This work investigates two approaches to alleviating this problem: dispersion halting and fast Fourier transform methods. Numerical results will be used to compare the methods with each other in both dispersive and nondispersive media.
引用
收藏
页码:341 / 344
页数:4
相关论文
共 50 条
  • [31] Convolution quadrature Galerkin boundary element method for the wave equation with reduced quadrature weight computation
    Chappell, David J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (02) : 640 - 666
  • [32] Accelerating Convolution-based Detection Model on GPU
    Liu, Qi
    Ruang, Zi
    Ru, Fuqiao
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 61 - 66
  • [33] Accelerating Convolution Neural Networks in Embedded Intel GPUs
    Kondo, Taiki
    Sato, Hiroyuki
    2022 TENTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING WORKSHOPS, CANDARW, 2022, : 109 - 113
  • [34] Harmonic Lowering for Accelerating Harmonic Convolution for Audio Signals
    Takeuchi, Hirotoshi
    Kashino, Kunio
    Ohishi, Yasunori
    Saruwatari, Hiroshi
    INTERSPEECH 2020, 2020, : 185 - 189
  • [35] Accelerating Backward Convolution of Convolutional Neural Networks on BWDSP
    Yang, Jiangping
    Wang, Gai
    Lu, Maohui
    Zheng, Qilong
    2018 9TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP 2018), 2018, : 163 - 170
  • [36] Generalized convolution quadrature based on Runge-Kutta methods
    Lopez-Fernandez, M.
    Sauter, S.
    NUMERISCHE MATHEMATIK, 2016, 133 (04) : 743 - 779
  • [37] APPROXIMATION METHODS FOR THE DISTRIBUTED ORDER CALCULUS USING THE CONVOLUTION QUADRATURE
    Yin, Baoli
    Liu, Yang
    Li, Hong
    Zhang, Zhimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1447 - 1468
  • [38] A Convolution Quadrature Method for Maxwell's Equations in Dispersive Media
    Dolz, Jurgen
    Egger, Herbert
    Shashkov, Vsevolod
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2020), 2021, 36 : 107 - 115
  • [39] Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves
    Laliena, Antonio R.
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2009, 112 (04) : 637 - 678
  • [40] Runge-Kutta convolution quadrature for the Boundary Element Method
    Banjai, Lehel
    Messner, Matthias
    Schanz, Martin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 : 90 - 101