Accelerating Convolution Quadrature

被引:0
|
作者
Weile, Daniel S. [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, 140 Evans Hall, Newark, DE 19716 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolution quadtrature (CQ) is a method for discretizing continuous convolution integrals by substituting a discrete Z domain approximation for the Laplace domain frequency parameter s. The model CQ provides is inherently dispersive, and so gives rise to a discrete Green's function with expanding temporal support. This work investigates two approaches to alleviating this problem: dispersion halting and fast Fourier transform methods. Numerical results will be used to compare the methods with each other in both dispersive and nondispersive media.
引用
收藏
页码:341 / 344
页数:4
相关论文
共 50 条
  • [1] Convolution quadrature revisited
    Lubich, C
    BIT NUMERICAL MATHEMATICS, 2004, 44 (03) : 503 - 514
  • [2] Convolution Quadrature Revisited
    Christian Lubich
    BIT Numerical Mathematics, 2004, 44 : 503 - 514
  • [3] Fast and oblivious convolution quadrature
    Schaedle, Achim
    Lopez-Fernandez, Maria
    Lubich, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02): : 421 - 438
  • [4] Convolution Quadrature for Wave Simulations
    Hassell, Matthew
    Sayas, Francisco-Javier
    NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING, 2016, 9 : 71 - 159
  • [5] Accelerating Deformable Convolution Networks
    Meng, Yuan
    Men, Hongjiang
    Prasanna, Viktor
    2022 IEEE 30TH INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2022), 2022, : 224 - 224
  • [6] Accelerating Quadrature Methods for Option Valuation
    Tse, Anson H. T.
    Thomas, David B.
    Luk, Wayne
    PROCEEDINGS OF THE 2009 17TH IEEE SYMPOSIUM ON FIELD PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2009, : 29 - 36
  • [7] Fractional Variational Integrators Based on Convolution Quadrature
    Belgacem, Khaled Hariz
    Jimenez, Fernando
    Ober-Bloebaum, Sina
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [8] Generalized convolution quadrature with variable time stepping
    Lopez-Fernandez, Maria
    Sauter, Stefan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) : 1156 - 1175
  • [9] A convolution quadrature using derivatives and its application
    Ren, Hao
    Ma, Junjie
    Liu, Huilan
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [10] A convolution quadrature using derivatives and its application
    Hao Ren
    Junjie Ma
    Huilan Liu
    BIT Numerical Mathematics, 2024, 64