Convolution Quadrature Revisited

被引:0
|
作者
Christian Lubich
机构
[1] Universität Tübingen,Mathematisches Institut
来源
BIT Numerical Mathematics | 2004年 / 44卷
关键词
convolution quadrature; discretized operational calculus; linear multistep methods;
D O I
暂无
中图分类号
学科分类号
摘要
This article reviews convolution quadrature and its uses, extends the known approximation results for the case of sectorial Laplace transforms to finite-part convolutions with non-integrable kernel, and gives new, unified proofs of the optimal error bounds for both locally integrable and non-integrable convolution kernels.
引用
收藏
页码:503 / 514
页数:11
相关论文
共 50 条
  • [1] Convolution quadrature revisited
    Lubich, C
    BIT NUMERICAL MATHEMATICS, 2004, 44 (03) : 503 - 514
  • [2] Accelerating Convolution Quadrature
    Weile, Daniel S.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 341 - 344
  • [3] CONVOLUTION REVISITED
    HEALY, TJ
    IEEE SPECTRUM, 1969, 6 (04) : 87 - &
  • [4] Fast and oblivious convolution quadrature
    Schaedle, Achim
    Lopez-Fernandez, Maria
    Lubich, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02): : 421 - 438
  • [5] Convolution Quadrature for Wave Simulations
    Hassell, Matthew
    Sayas, Francisco-Javier
    NUMERICAL SIMULATION IN PHYSICS AND ENGINEERING, 2016, 9 : 71 - 159
  • [6] Adaptive Quadrature—Revisited
    Walter Gander
    Walter Gautschi
    BIT Numerical Mathematics, 2000, 40 : 84 - 101
  • [7] Adaptive quadrature - Revisited
    Gander, W
    Gautschi, W
    BIT, 2000, 40 (01): : 84 - 101
  • [8] Fractional Variational Integrators Based on Convolution Quadrature
    Belgacem, Khaled Hariz
    Jimenez, Fernando
    Ober-Bloebaum, Sina
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [9] Generalized convolution quadrature with variable time stepping
    Lopez-Fernandez, Maria
    Sauter, Stefan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) : 1156 - 1175
  • [10] A convolution quadrature using derivatives and its application
    Ren, Hao
    Ma, Junjie
    Liu, Huilan
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)