Composite kernel learning

被引:54
|
作者
Szafranski, Marie [1 ,2 ]
Grandvalet, Yves [3 ]
Rakotomamonjy, Alain [4 ]
机构
[1] Univ Evry Val dEssonne, IBISC, CNRS, FRE 3190, F-91025 Evry, France
[2] Univ Aix Marseille, CNRS, LIF, UMR 6166, Marseille, France
[3] Univ Technol Compiegne, CNRS, UMR Heudiasyc 6599, F-60205 Compiegne, France
[4] Univ Rouen, LITIS, EA 4108, F-76801 St Etienne, France
关键词
Supervized learning; Support vector machine; Kernel learning; Structured kernels; Feature selection and sparsity; SELECTION; REGRESSION;
D O I
10.1007/s10994-009-5150-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Support Vector Machine is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels.
引用
收藏
页码:73 / 103
页数:31
相关论文
共 50 条
  • [1] Composite kernel learning
    Marie Szafranski
    Yves Grandvalet
    Alain Rakotomamonjy
    Machine Learning, 2010, 79 : 73 - 103
  • [2] Multiple kernel learning using composite kernel functions
    Shiju, S. S.
    Salim, Asif
    Sumitra, S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 64 : 391 - 400
  • [3] Composite kernel learning network for hyperspectral image classification
    Wu, Zhe
    Liu, Jianjun
    Yang, Jinlong
    Xiao, Zhiyong
    Xiao, Liang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (16) : 6068 - 6091
  • [4] MULTIPLE COMPOSITE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Du, Peijun
    Xia, Junshi
    Ghamisi, Pedram
    Iwasaki, Akira
    Benediktsson, Jon Atli
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2223 - 2226
  • [5] Composite and Multiple Kernel Learning for Brain Computer Interface
    Miao, Minmin
    Zeng, Hong
    Wang, Aimin
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 803 - 810
  • [6] Semi-supervised Metric Learning Using Composite Kernel
    Zare, T.
    Sadeghi, M. T.
    Abutalebi, H. R.
    2012 SIXTH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2012, : 1151 - 1156
  • [7] Ship Recognition Based on Active Learning and Composite Kernel SVM
    Pan, Bin
    Jiang, Zhiguo
    Wu, Junfeng
    Zhang, Haopeng
    Luo, Penghao
    ADVANCES IN IMAGE AND GRAPHICS TECHNOLOGIES (IGTA 2015), 2015, 525 : 198 - 207
  • [8] Gaussian Process Surrogate Model with Composite Kernel Learning for Engineering Design
    Palar, Pramudita Satria
    Zuhal, Lavi Rizki
    Shimoyama, Koji
    AIAA JOURNAL, 2020, 58 (04) : 1864 - 1880
  • [9] Distance metric learning for soft subspace clustering in composite kernel space
    Wang, Jun
    Deng, Zhaohong
    Choi, Kup-Sze
    Jiang, Yizhang
    Luo, Xiaoqing
    Chung, Fu -Lai
    Wang, Shitong
    PATTERN RECOGNITION, 2016, 52 : 113 - 134
  • [10] Hyperspectral image classification by AdaBoost weighted composite kernel extreme learning machines
    Li, Lu
    Wang, Chengyi
    Li, Wei
    Chen, Jingbo
    NEUROCOMPUTING, 2018, 275 : 1725 - 1733