Composite kernel learning

被引:54
|
作者
Szafranski, Marie [1 ,2 ]
Grandvalet, Yves [3 ]
Rakotomamonjy, Alain [4 ]
机构
[1] Univ Evry Val dEssonne, IBISC, CNRS, FRE 3190, F-91025 Evry, France
[2] Univ Aix Marseille, CNRS, LIF, UMR 6166, Marseille, France
[3] Univ Technol Compiegne, CNRS, UMR Heudiasyc 6599, F-60205 Compiegne, France
[4] Univ Rouen, LITIS, EA 4108, F-76801 St Etienne, France
关键词
Supervized learning; Support vector machine; Kernel learning; Structured kernels; Feature selection and sparsity; SELECTION; REGRESSION;
D O I
10.1007/s10994-009-5150-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Support Vector Machine is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels.
引用
收藏
页码:73 / 103
页数:31
相关论文
共 50 条
  • [31] Implicit Kernel Learning
    Li, Chun-Liang
    Chang, Wei-Cheng
    Mroueh, Youssef
    Yang, Yiming
    Poczos, Barnabas
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [32] Learning the kernel with hyperkernels
    Ong, CS
    Smola, AJ
    Williamson, RC
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1043 - 1071
  • [33] KERNEL DICTIONARY LEARNING
    Hien Van Nguyen
    Patel, Vishal M.
    Nasrabadi, Nasser M.
    Chellappa, Rama
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2021 - 2024
  • [34] Joint Learning of Distance Metric and Kernel Classifier via Multiple Kernel Learning
    Zhang, Weiqi
    Yan, Zifei
    Zhang, Hongzhi
    Zuo, Wangmeng
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 586 - 600
  • [35] Multiple kernel learning with hybrid kernel alignment maximization
    Wang, Yueqing
    Liu, Xinwang
    Dou, Yong
    Lv, Qi
    Lu, Yao
    PATTERN RECOGNITION, 2017, 70 : 104 - 111
  • [36] Learning kernel parameters for kernel Fisher discriminant analysis
    Liu, Jing
    Zhao, Feng
    Liu, Yi
    PATTERN RECOGNITION LETTERS, 2013, 34 (09) : 1026 - 1031
  • [37] A survey on online kernel selection for online kernel learning
    Zhang, Xiao
    Liao, Yun
    Liao, Shizhong
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (02)
  • [38] Learning the kernel parameters in kernel minimum distance classifier
    Zhang, DQ
    Chen, SC
    Zhou, ZH
    PATTERN RECOGNITION, 2006, 39 (01) : 133 - 135
  • [39] A composite kernel for named entity recognition
    Saha, Sujan Kumar
    Narayan, Shashi
    Sarkar, Sudeshna
    Mitra, Pabitra
    PATTERN RECOGNITION LETTERS, 2010, 31 (12) : 1591 - 1597
  • [40] A kernel learning framework for domain adaptation learning
    TAO JianWen 1
    2 Department of Computing
    3 School of Information Engineering
    ScienceChina(InformationSciences), 2012, 55 (09) : 1983 - 2007