Composite kernel learning

被引:54
|
作者
Szafranski, Marie [1 ,2 ]
Grandvalet, Yves [3 ]
Rakotomamonjy, Alain [4 ]
机构
[1] Univ Evry Val dEssonne, IBISC, CNRS, FRE 3190, F-91025 Evry, France
[2] Univ Aix Marseille, CNRS, LIF, UMR 6166, Marseille, France
[3] Univ Technol Compiegne, CNRS, UMR Heudiasyc 6599, F-60205 Compiegne, France
[4] Univ Rouen, LITIS, EA 4108, F-76801 St Etienne, France
关键词
Supervized learning; Support vector machine; Kernel learning; Structured kernels; Feature selection and sparsity; SELECTION; REGRESSION;
D O I
10.1007/s10994-009-5150-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Support Vector Machine is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels.
引用
收藏
页码:73 / 103
页数:31
相关论文
共 50 条
  • [21] PET Image Reconstruction With Kernel and Kernel Space Composite Regularizer
    Guo, Shiyao
    Sheng, Yuxia
    Chai, Li
    Zhang, Jingxin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (06) : 1786 - 1798
  • [22] Wavelet kernel learning
    Yger, F.
    Rakotomamonjy, A.
    PATTERN RECOGNITION, 2011, 44 (10-11) : 2614 - 2629
  • [23] Fair Kernel Learning
    Perez-Suay, Adrian
    Laparra, Valero
    Mateo-Garcia, Gonzalo
    Munoz-Mari, Jordi
    Gomez-Chova, Luis
    Camps-Valls, Gustau
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT I, 2017, 10534 : 339 - 355
  • [24] Learning by kernel polarization
    Baram, Y
    NEURAL COMPUTATION, 2005, 17 (06) : 1264 - 1275
  • [25] Kernel reconstruction learning
    Wu, Yun
    Xiong, Shifeng
    NEUROCOMPUTING, 2023, 522 : 1 - 10
  • [26] Kernel transform learning
    Maggu, Jyoti
    Majumdar, Angshul
    PATTERN RECOGNITION LETTERS, 2017, 98 : 117 - 122
  • [27] Kernel Continual Learning
    Derakhshani, Mohammad Mahdi
    Zhen, Xiantong
    Shao, Ling
    Snoek, Cees G. M.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [28] REGULARIZATION IN KERNEL LEARNING
    Mendelson, Shahar
    Neeman, Joseph
    ANNALS OF STATISTICS, 2010, 38 (01): : 526 - 565
  • [29] Deep Kernel Learning
    Wilson, Andrew Gordon
    Hu, Zhiting
    Salakhutdinov, Ruslan
    Xing, Eric P.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 370 - 378
  • [30] Fourier Kernel Learning
    Bazavan, Eduard Gabriel
    Li, Fuxin
    Sminchisescu, Cristian
    COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 : 459 - 473