MULTIPLE COMPOSITE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:0
|
作者
Du, Peijun [1 ]
Xia, Junshi [2 ]
Ghamisi, Pedram [3 ]
Iwasaki, Akira [2 ]
Benediktsson, Jon Atli [4 ]
机构
[1] Nanjing Univ, State Adm Surveying Mapping & Geoinformat China, Key Lab Satellite Mapping Technol & Applicat, Nanjing 210093, Jiangsu, Peoples R China
[2] Univ Tokyo, Res Ctr Adv Sci & Technol, Tokyo 1530041, Japan
[3] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, D-82234 Wessling, Germany
[4] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
基金
中国国家自然科学基金;
关键词
Composite kernel learning; Ensemble learning; Classification; Hyperspectral image; SPECTRAL-SPATIAL CLASSIFICATION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this work, we develop a new framework to combine ensemble learning and composite kernel learning for hyperspectral image classification. We refer it as the multiple composite kernel learning, which is based on an iterative architecture. More specifically, in each iteration, we use the rotation-based ensemble to create rotation matrix, which is used to generate rotated features for both spectral and spatial information (e. g., extinction profiles). Then, the new spectral and spatial features are integrated into the composite kernels based on support vector machines classifier. Different rotation matrices will lead to obtaining various newly spectral and spatial characteristics, thereby they further increase the diversity and the classification performance. Experimental results on Indian Pines benchmark hyperspectral dataset demonstrate the excellent performance of the proposed method.
引用
收藏
页码:2223 / 2226
页数:4
相关论文
共 50 条
  • [1] Composite kernel learning network for hyperspectral image classification
    Wu, Zhe
    Liu, Jianjun
    Yang, Jinlong
    Xiao, Zhiyong
    Xiao, Liang
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (16) : 6068 - 6091
  • [2] Multiple Kernel Learning for Hyperspectral Image Classification: A Review
    Gu, Yanfeng
    Chanussot, Jocelyn
    Jia, Xiuping
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11): : 6547 - 6565
  • [3] Discriminative Multiple Kernel Learning for Hyperspectral Image Classification
    Wang, Qingwang
    Gu, Yanfeng
    Tuia, Devis
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (07): : 3912 - 3927
  • [4] Hyperspectral image classification based on multiple kernel mutual learning
    Cui, Binge
    Zhong, Liwei
    Yin, Bei
    Ren, Guangbo
    Lu, Yan
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2019, 99 : 113 - 122
  • [5] A manifold framework of multiple-kernel learning for hyperspectral image classification
    Xie, Xiaodan
    Li, Bohu
    Chai, Xudong
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (11): : 3429 - 3439
  • [6] A manifold framework of multiple-kernel learning for hyperspectral image classification
    Xiaodan Xie
    Bohu Li
    Xudong Chai
    [J]. Neural Computing and Applications, 2017, 28 : 3429 - 3439
  • [7] SPATIAL-SPECTRAL MULTIPLE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Gu, Yanfeng
    Feng, Kai
    Wang, Hong
    [J]. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [8] Hyperspectral image classification by AdaBoost weighted composite kernel extreme learning machines
    Li, Lu
    Wang, Chengyi
    Li, Wei
    Chen, Jingbo
    [J]. NEUROCOMPUTING, 2018, 275 : 1725 - 1733
  • [9] Generalized Composite Kernel Framework for Hyperspectral Image Classification
    Li, Jun
    Marpu, Prashanth Reddy
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (09): : 4816 - 4829
  • [10] Ideal Regularized Composite Kernel for Hyperspectral Image Classification
    Peng, Jiangtao
    Chen, Hong
    Zhou, Yicong
    Li, Luoqing
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1563 - 1574