Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles

被引:111
|
作者
Yuan, Huizhen [1 ]
Ji, Wei [2 ]
Chu, Shuwen [1 ]
Qian, Siyu [1 ]
Wang, Fang [1 ]
Masson, Jean-Francois [3 ]
Han, Xiuyou [1 ]
Peng, Wei [1 ]
机构
[1] Dalian Univ Technol, Coll Phys & Optoelect Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Chem, Dalian 116024, Peoples R China
[3] Univ Montreal, Dept Chim, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
来源
基金
中国国家自然科学基金;
关键词
Surface plasmon resonance; Glucose; P-mercaptophenylboronicacid-modified Au nanoparticles; Signal amplification tag; SMALL MOLECULES; QUANTUM DOTS; SPR SENSORS; SENSITIVITY; PROBE; NANOMATERIALS; SPECTROSCOPY; IMMUNOASSAY; PREVALENCE; MONOLAYERS;
D O I
10.1016/j.bios.2018.06.042
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A highly sensitive surface plasmon resonance (SPR) sensor is reported for glucose detection using self-assembled p-mercaptophenylboronic acid (PMBA) monolayer on Au coated optical fibers. The cis-diol group of saccharides, such as for glucose, interacted with the self-assembled PMBA monolayers on the optical fibers, but the low molecular mass of glucose is insufficient for measuring a significant shift in SPR wavelength. The response for glucose was thus enhanced with Au nanoparticles (Au NPs) modified with 2-aminoethanethiol (AET) and PMBA. Selectivity was assured since glucose has the ability to capture the signal amplification tags (Au NPs/AETPMBA) through secondary binding with another set of syn-periplanar diol groups and the PMBA on the gold surface. Accordingly, a glucose concentration-dependent sandwich structure was formed and the coupling between Au NPs and Au film results in the red shift of SPR resonance wavelength. The experimental results demonstrated that this SPR sensor responded to glucose within a range of 0.01-30 mM better than to fructose and galactose. The minimum concentration for quantify glucose is as low as 80 nM, which is lower than the physiological blood glucose level. Glucose was then accurately detected in urine sample, which indicated the potential application of the sensor for the analysis of glucose in urine. We believe that our proposed PMBA-modified single amplification tag and sensing principle can also be used for biomolecules consisting of carbohydrate structures, particularly for DNA-associated bioanalysis.
引用
收藏
页码:637 / 643
页数:7
相关论文
共 50 条
  • [1] Measurement of glucose concentration by fiber-optic surface plasmon resonance sensor
    Li, Dachao
    Zhu, Rui
    Wu, Peng
    Wu, Jianwei
    Xu, Kexin
    [J]. OPTICAL FIBERS AND SENSORS FOR MEDICAL DIAGNOSTICS AND TREATMENT APPLICATIONS XIII, 2013, 8576
  • [2] An implantable fiber-optic surface plasmon resonance glucose sensor based on LPFG
    Li, Dachao
    Zhu, Rui
    Wu, Peng
    Yang, Jia
    Xu, Kexin
    [J]. OPTICAL FIBERS AND SENSORS FOR MEDICAL DIAGNOSTICS AND TREATMENT APPLICATIONS XII, 2012, 8218
  • [3] Modeling of tapered fiber-optic surface plasmon resonance sensor with enhanced sensitivity
    Verma, Rajneesh K.
    Sharma, Anuj K.
    Gupta, Banshi D.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (21-24) : 1786 - 1788
  • [4] A FIBER-OPTIC ALCOHOL SENSOR BASED ON SURFACE PLASMON RESONANCE
    Lin, Yu-Cheng
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2014, 56 (03) : 766 - 769
  • [5] Fiber-optic waveguide coupled surface plasmon resonance sensor
    Ahn, Jae Heon
    Seong, Tae Yeon
    Kim, Won Mok
    Lee, Taek Sung
    Kim, Inho
    Lee, Kyeong-Seok
    [J]. OPTICS EXPRESS, 2012, 20 (19): : 21729 - 21738
  • [6] Design of a Miniaturized Fiber-Optic Surface Plasmon Resonance Sensor
    Schuster, Tobias
    Schaeffer, Christian G.
    Mertig, Michael
    Plettemeier, Dirk
    [J]. TM-TECHNISCHES MESSEN, 2013, 80 (7-8) : 221 - 228
  • [7] Miniaturized fiber-optic surface-plasmon-resonance sensor
    Schuster, Tobias
    Neumann, Niels
    Schaeffer, Christian
    [J]. 21ST INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, 2011, 7753
  • [8] Graphene Enhanced Surface Plasmon Resonance Fiber-Optic Biosensor
    Zhang, Nancy Meng Ying
    Li, Kaiwei
    Shum, Perry Ping
    Yu, Xuechao
    Zeng, Shuwen
    Wu, Zhifaug
    Wang, Qi Jie
    Yong, Ken Tye
    Wei, Lei
    [J]. 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [9] Surface plasmon resonance based fiber-optic sensor for the detection of pesticide
    Rajan
    Chand, Subhash
    Gupta, B. D.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2007, 123 (02) : 661 - 666
  • [10] Fiber-optic refractive index sensor based on surface plasmon resonance
    Hlubina, Petr
    Ciprian, Dalibor
    Kadulova, Miroslava
    [J]. PHOTONICS, DEVICES, AND SYSTEMS VI, 2015, 9450