CIRCULATORY INTEGRAL AND ROUTH'S EQUATIONS OF LAGRANGE SYSTEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

被引:0
|
作者
Fu, Jing-Li [1 ]
Zhang, Lijun [2 ]
Khalique, Chaudry [3 ]
Guo, Ma-Li [4 ]
机构
[1] Zhejiang Univ Water Resources & Elect Power, Coll Mech & Automot Engn, Hangzhou, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao, Shandong, Peoples R China
[3] North West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, Mafikeng Campus, Mmabatho, South Africa
[4] Zhejiang Sci Tech Univ, Inst Math Phys, Hangzhou, Peoples R China
来源
THERMAL SCIENCE | 2021年 / 25卷 / 02期
关键词
circulatory integral; routh's equation; Lagrange system; Riemann-Liouville fractional derivatives;
D O I
10.2298/TSCI200520034F
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, the circulatory integral and Routh's equations of Lagrange systems are established with Riemann-Liouville fractional derivatives, and the circulatory integral of Lagrange systems is obtained by making use of the relationship between Riemann-Liouville fractional integrals and fractional derivatives. Thereafter, the Routh's equations of Lagrange systems are given based on the fractional circulatory integral. Two examples are presented to illustrate the application of the results.
引用
收藏
页码:1355 / 1363
页数:9
相关论文
共 50 条
  • [1] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [2] CAUCHY PROBLEM FOR THE EQUATIONS WITH FRACTIONAL OF RIEMANN-LIOUVILLE DERIVATIVES
    Zabreiko, Petr P.
    Ponomareva, Svetlana, V
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (01): : 13 - 20
  • [3] SOLVABILITY OF THE CAUCHY PROBLEM FOR EQUATIONS WITH RIEMANN-LIOUVILLE'S FRACTIONAL DERIVATIVES
    Zabreiko, Petr P.
    Ponomareva, Svetlana, V
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2018, 62 (04): : 391 - 397
  • [4] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [5] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    [J]. APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [6] (k, s)-Riemann-Liouville fractional integral and applications
    Sarikaya, Mehmet Zeki
    Dahmani, Zoubir
    Kiris, Mehmet Eyup
    Ahmad, Farooq
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 77 - 89
  • [7] Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 295 - 308
  • [8] Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives
    Li Kexue
    Peng Jigen
    Jia Junxiong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) : 476 - 510
  • [9] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [10] Mesoscopic fractional kinetic equations versus a Riemann-Liouville integral type
    Nigmatullin, Raoul R.
    Trujillo, Juan J.
    [J]. ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, : 155 - +