(k, s)-Riemann-Liouville fractional integral and applications

被引:127
|
作者
Sarikaya, Mehmet Zeki [1 ]
Dahmani, Zoubir [2 ]
Kiris, Mehmet Eyup [3 ]
Ahmad, Farooq [4 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] Univ Mostaganem, UMAB, Lab Pure & Appl Math, Mostaganem, Algeria
[3] Afyon Kocatepe Univ, Fac Sci & Arts, Dept Math, Afyon, Turkey
[4] Majmaah Univ, Colleege Sci, Dept Math, Al Zulfi, Saudi Arabia
来源
关键词
Riemann-Liouville fractional integrals; synchronous function; Chebyshev inequality; Holder inequality; INEQUALITIES;
D O I
10.15672/HJMS.20164512484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new approach on fractional integration, which generalizes the Riemann-Liouville fractional integral. We prove some properties for this new approach. We also establish some new integral inequalities using this new fractional integration.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [1] Some integral inequalities for (k, s) - Riemann-Liouville fractional operators
    Houas, Mohamed
    Dahmani, Zoubir
    Sarikaya, Mehmet Zeki
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1575 - 1585
  • [2] An extension of Schweitzer's inequality to Riemann-Liouville fractional integral
    Abdeljawad, Thabet
    Meftah, Badreddine
    Lakhdari, Abdelghani
    Alqudah, Manar A.
    [J]. OPEN MATHEMATICS, 2024, 22 (01):
  • [3] On right multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 377 - 387
  • [4] On left multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 239 - 248
  • [5] Compactness of Riemann-Liouville fractional integral operators
    Lan, Kunquan
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (84) : 1 - 15
  • [6] Bounds of Riemann-Liouville fractional integral operators
    Farid, Ghulam
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 637 - 648
  • [7] Analytical properties of (k, s)-Riemann-Liouville fractional integral and its fractal dimension
    Priya, M.
    Uthayakumar, R.
    [J]. JOURNAL OF ANALYSIS, 2021, 29 (04): : 1391 - 1402
  • [8] Some Simpson's Riemann-Liouville Fractional Integral Inequalities with Applications to Special Functions
    Nasir, Jamshed
    Qaisar, Shahid
    Butt, Saad Ihsan
    Khan, Khuram Ali
    Mabela, Rostin Matendo
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [9] Some generalized Riemann-Liouville k-fractional integral inequalities
    Agarwal, Praveen
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [10] Some generalized Riemann-Liouville k-fractional integral inequalities
    Praveen Agarwal
    Jessada Tariboon
    Sotiris K Ntouyas
    [J]. Journal of Inequalities and Applications, 2016