(k, s)-Riemann-Liouville fractional integral and applications

被引:127
|
作者
Sarikaya, Mehmet Zeki [1 ]
Dahmani, Zoubir [2 ]
Kiris, Mehmet Eyup [3 ]
Ahmad, Farooq [4 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[2] Univ Mostaganem, UMAB, Lab Pure & Appl Math, Mostaganem, Algeria
[3] Afyon Kocatepe Univ, Fac Sci & Arts, Dept Math, Afyon, Turkey
[4] Majmaah Univ, Colleege Sci, Dept Math, Al Zulfi, Saudi Arabia
来源
关键词
Riemann-Liouville fractional integrals; synchronous function; Chebyshev inequality; Holder inequality; INEQUALITIES;
D O I
10.15672/HJMS.20164512484
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new approach on fractional integration, which generalizes the Riemann-Liouville fractional integral. We prove some properties for this new approach. We also establish some new integral inequalities using this new fractional integration.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
  • [21] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [22] The relationship between the order of (k, s)-Riemann-Liouville fractional integral and the fractal dimensions of a fractal function
    A. A. Navish
    M. Priya
    R. Uthayakumar
    [J]. The Journal of Analysis, 2023, 31 : 261 - 277
  • [23] The relationship between the order of (k, s)-Riemann-Liouville fractional integral and the fractal dimensions of a fractal function
    Navish, A. A.
    Priya, M.
    Uthayakumar, R.
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (01): : 261 - 277
  • [24] Gruss type integral inequalities for generalized Riemann-Liouville k-fractional integrals
    Mubeen, Shahid
    Iqbal, Sana
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [25] FRACTAL DIMENSIONS FOR THE MIXED (κ, s)-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OF BIVARIATE FUNCTIONS
    Wang, B. Q.
    Xiao, W.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (03)
  • [26] General (k, p)-Riemann-Liouville fractional integrals
    Benaissa, Bouharket
    Budak, Huseyin
    [J]. FILOMAT, 2024, 38 (08) : 2579 - 2586
  • [27] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    [J]. APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [28] Geometric Interpretation for Riemann-Liouville Fractional-Order Integral
    Bai, Lu
    Xue, Dingyu
    Meng, Li
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3225 - 3230
  • [29] SEVERAL INTEGRAL INEQUALITIES FOR GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL OPERATORS
    Galeano Delgado, Juan Gabriel
    Napoles Valdes, Juan E.
    Perez Reyes, Edgardo
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 269 - 278
  • [30] ON RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR OF A GENERAL CLASS OF FUNCTIONS
    Kumar, Virendra
    [J]. JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (3-4): : 193 - 199